CIS 5560

Cryptography
Lecture 6

Announcements

c HW 2 out tomorrow
 Due Friday, Feb 13 at 5PM on Gradescope
 Covers PRGs, PRFs, multi-message indistinguishability

« HW1 due this Friday (Feb 6)

Recap of last lecture

Construction: PRG Length extension

Let G : {0,1}" = {0,1}Y"! be a PRG

Goal: use G to generate many pseudorandom bits.

Construction of G'(sy):

4 N S ¢ N 9 4 NS 1)
seced=§5,— G — G —— e e e | G — G
U l) U l) U l) U l)
bl b2 bm—l bm

Technique: Hybrid argument

Key idea: instead of directly trying to go from first distribution to second, take small steps!

1. Construct the steps:
A sequence of (polynomially-many) distributions H,, ..., H, _, b/w the two target distributions.

2. Show that it’s easy to move between steps:
Argue that each pair of neighboring distributions are indistinguishable.

3. Start moving:
Conclude that the target distributions are indistinguishable via contradiction:

A. Assume the target distributions are distinguishable
B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

New: Multi-msg Indistinguishability Game
For every PPT “distinguishing” adversary A

| Pr[MMInd = 1] — Pr[random guess] | = negl(/l

Experiment MMInd

Adv A Challenger
Interaction!

My, m; 1.0 < {0,1}; k « A

—————

@ ¢ 2. Set ¢ := Enc(k, m,,)
b/
—_—

4. Output b =}

New: Multi-msg Indistinguishability Game

For every PPT A, there exists a negligible fn &,

k< H,b < {0,1}
Foriinl,...,q: 1
Pr |A(c) =D (m; 0,113 1) < A(ciy) ~5 < &(n)
¢; = Enc(k, m; ;)

Indistinguishability under
“Chosen-Plaintext Attack”
IND-CPA

14

Today’s Lecture

* Encryption for many messages

* Definition

e Attempted construction from PRGs
* PRFs

* PRPs

* Block ciphers

Stream Ciphers (PseudoOTP) insecure under CPA

Problem: Enc(k, m) outputs same ciphertext for msg m.

my, my € M
Challenger
CO <« EnC(k, mo)
k< A
my, m; € M
output 0 ¢ < Enc(k, my)

ifc=C0

So what?

an attacker can learn that two encrypted files are the same, two encrypted packets are the
same, etc.

Leads to significant attacks when message space is small

Stream Ciphers insecure under CPA

Problem: Enc(k, m) outputs same ciphertext for msg m.

my, my € M
Challenger
CO <« EnC(k, mo)
k< A
my, m; € M
output 0 ¢ < Enc(k, my)

ifc=C0

If secret key Is to be used multiple times

given the same plaintext message twice,
encryption must produce different outputs.

ldeas for multi-message encryption

How to make encryption of same messages change?

Problem: If encrypting the same message twice, all
iInputs are the same: key, message.

Solution: we need to add new inputs that change per
encryption! What can we change?

o State? (e.g. counter of num msgs)

e Randomness?

Approach 1: Stateful encryption

Gen(1%) —= k:

1. Sample an n-bit string at random.

Enc(k, m, st) — c:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Discard first £ bits of s to get s’
3. Set :=¢ + 1
4. Outputc =s" P m

Dec(k, c) — m:
1. Repeat steps 1—4 of Enc
2. Outputm =s" c

Is this secure for multiple messages?

Does this work?

Ans: Yes!

Exercise: reduce to PRG security
ldea: Encryption of i-th message is PseudoOTP.

Pros:

* Relies on existing tools

 Generally fast

cons:

 Must maintain counter of encrypted messages
 Must rerun PRG from start every time

* Sequential encryption/decryption

Problem: PRGs are sequential

PRG G(k) Key k (i.e. seed)

b1 b2 b3 b5 bf

. With a PRG, accessing the £-th bit takes time .
» How to get efficient random access into output?

- That is, we want some function such that F(£) = £-th bit

New tool:

Pseudorandom
Function

Background: Random function

» Let X be an input space, and Y be an output space.
« We will denote the set of all functions from X to Y as Fns|X, Y|
e The number of such functions is | Y| Xl

* A random function from X to Y is a function that is sampled uniformly at
random from Fns|X, Y]

 Important property of every random function f-

» For each x € X, f(x) is uniformly and independently distributed in Y.

Stateful encryption w/ RFs

Gen(1") — k: Sample a random function f and set k :=f.

Enc(k, m, st) — c:
1. Interpret St as number £ of messages encrypted so far.
2. Output ¢ = () & m

Dec(k, ¢, st) — m:
1. Interpret st as number £ of messages encrypted so far.
2. Output m = f(£) ® c

17

Does this work?

Ans: Yes!

Idea: Each encryption is XOR-ing with output of RF;
.e., XOR-ing with a uniformly random string

Pros:

* Relies on existing tools

 Generally fast

 No need to run RF from start!

Cons:

 Must maintain counter of encrypted messages

e How to store a random function?
18

Encryption w/ RFs

» What’s the problem with this?

» Hint: What does a random function look like??
* Is it efficiently evaluatable?
» Does it have a short description?

Problem: Random Functions
can’t be stored efficiently

A random function is a random mapping from X to Y.

Simplest representation: function table

What is the size of an arbitrary mapping?

| X|log| Y]

For each x, | Y| possible choices;
each choice has log | Y| bits representation

20

Problem: Random Functions
can’t be stored efficiently

For encryption, | X |log| Y| is too large!

Let’s see why:
In our case, | Y| is message length, e.g. Y = {0,1}, | Y| = 2.
if we encrypt, e.g., | X| = 220 1 _pit messages, our key is now 220

bits, I.e. same as OTP!

Also, | Y] Xl should be large (otherwise brute force possible: try all
possible functions).

21

Solution: Pseudorandom functions

 Replace a real random function with a function that looks random
e S, ={F(k,-)|ke X} CFns[X,Y]

* |ntuition: a PRF is secure if
a random function in Fns[X, Y| is indistinguishable from

a random function in S
Size [K]

Size | Y| X

Secure PRFs

 Replace a real random function with a function that looks random
o S.={F(k,-)|ke€ K} C Fns[X,Y]

* |ntuition: a PRF is secure if
a random function in Fns[X, Y| is indistinguishable from

a random function in S

X e X

Catals
f(x)orF(k,x)?

How to define PRF security?

» For PRG security, we give the adversary either a random
string or a pseudorandom string, and ask it to figure out
which one 1t IS

» Can the same strategy work for PRFs?

PRF Security - Attempt 1

Adv . Challenger

1.b « {0,1}
2.1tb=0
1. Sample f < Fns[X, Y]

3.1fb=1
1. Sample k « A
2. Setf(-) = F(k,)

| Pr[b = b'] — 1/2| = negl(n)

Problem: Random Functions
can’t be stored efficiently

For encryption, | X |log| Y| is too large!

Let’s see why:
In our case, | Y| is message length, e.g. Y = {0,1}, | Y| = 2.
if we encrypt, e.g., | X| = 220 1 _pit messages, our key is now 220

bits, I.e. same as OTP!

Also, | Y] Xl should be large (otherwise brute force possible: try all
possible functions).

20

PRF Security

Challenger

1.b < {0,1}

2.1fb=0
1. Sample f <« Fns[X, Y]
2. Sety := f(x)

3. 1fb=1
1. Sample k « KA

Y 2. Sety := Fi(x)
b/

4.b = b

| Pr[b = b'] — 1/2| = negl(n)

PRF Security - Attempt 2

» Q: How many questions should the adversary be allowed
to ask?

. 1
. D

* poly(n)
* exp(n)

» Why is 1 insufficient? Can't tell any information from 1 query

* Why is exp(n) too many? Adv will run in exponential time!

PRF Security Game

For every PPT “distinguishing” adversary A

| Pr[PRFInd = 1] — Pr{random guess] | = negl(1)

Experiment PRFInd Challenger

Repeat th
Adv A 1.b < {0,1}

2.1fb=0
1. Sample f <« Fns[X, Y]

2. Sety ;= f(x)

Y 3.1fb=1
b’ 1. Sample k <« A
: ’ 2. Sety := F(x)

4.b = b’

29

Equivalent definition:

For every PPT “distinguishing” adversary A
| Pr[AT) | k < {0,1}"] — Pr[A/"Y | f < Funs[X, Y]| = negl(1)

“opaq ue!!
dCCEesSS

30

PRFs = multi-message encryption

ldeas for multi-message encryption

 State? (e.g. counter of num msgs)
» Randomness?

Stateful encryption w/ PRFs

Gen(1") — k:

Sample an n-bit string at random.

Enc(k, m, st) — c:
1. Interpret st as number £ of messages encrypted so far.
2. Outputc =F, () ®m

Dec(k, ¢, st) — m:
1. Interpret st as number £ of messages encrypted so far.
2. Outputm = F(£) D c

Does this work?

Ans: Yes!
Idea: Using PRF for encryption is indistinguishable from using RF;

So hybrid HO is Enc(k, m));
H1 Is EHCRF(k, m());
H2 IS EnCRF(k, m());
H3 is Enc(k, m,)

Pros:
» Generally fast
No need to run PRF from start!

Cons:

Must maintain counter of encrypted messages
(Just like PRG solution)

34

ldeas for multi-message encryption

« Randomness?

Randomized encryption w/ PRFs

Gen(1"): Generate a random n-bit key k that defines
F,:{0,1}% = {0,1}™

Enc(k, m): Pick a random r and
set the ciphertext ¢ := (r,y = F(r) & m)

Dec(k,c = (r,y)): Output Fi.(r) @ c

36

Does this work?

Ans: Yes!
Proof: next

Pros:

* Relies on existing tools
» Generally fast
* No need to run PRF from start!

Cons:
» Need good randomness during encryption

37

Security of Randomized Encryption

Enc(k, m): Pick a random r and set the ciphertext ¢ := (r,y = F,(r) & m)
Dec(k, c = (r,y)): Output F,(r) @ c

* Proof strategy: Focusing on 1msg security first

38

Proof by hybrid argument

Enc(k, m): Pick a random r and set the ciphertext ¢ := (r,y = F,(r) & m)

Dec(k, c = (r,y)): Output F,(r) @ c

Single msg security says that the following dists are indistinguishable.
{c <« Enc(k,my) | k < A} and {c <« Enc(k,m,) | k « H}

How to do this? Let’s create more (supposedly) indistinguishable distributions:
Hy={c:=(r,my® F(r) | r < {0,1}" k « K}

H ={c=0my@R(r) | r{0,1}";R « Fns}
Hy={c:=,my®r | r{0,1}"r < {0,1}"}
Hy={c:=0t,mdr | r< {0,1}"r <« {0,1}"}
Hy={c:=(r,m @ R(") | r < {0,1)";R « Fns} ~~ @einofrandomin
H.={c:=m ®F() | r< {0,1}k« X} = DbyPRFsecurity

~ by PRF security

~ defn of random fn

~ one time pad

39

Security of Randomized Encryption

Enc(k, m): Pick a random r and set the ciphertext ¢ := (r,y = F,(r) & m)
Dec(k, c = (r,y)): Output F,(r) @ c

* Proof strategy:
1msg security done.
- What about multi-msg security?
« Similar idea:
» Switch PRF to RF

« Argue that each encryption is OTP with fresh key (output of RF), and switch from
encryptions of m; ; to encryptions of m; ;.

- (Caveat: what if we sample the same r for two different ciphertexts?

* No longer OTP.
» Thankfully, if input space of PRF is large, this happens with negligible prob. 40

So far

Multi-msg security via randomized encryption
Pros:

» Relies on existing tools

» Generally fast

* No need to run PRF from start!

Cons:

- Ciphertext is ~2x larger: (r,m @ F,(r))

 Can only encrypt fixed-size n bit msg at a time

- Thus, sending a message of, say, 10n bits,
requires 20n-sized ciphertext

41

