
CIS 5560

Lecture 6
Cryptography

1



Announcements

• HW 2 out tomorrow 

• Due Friday, Feb 13 at 5PM on Gradescope


• Covers PRGs, PRFs, multi-message indistinguishability


• HW1 due this Friday (Feb 6)



Recap of last lecture
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Let  be a PRG


Goal: use  to generate many pseudorandom bits. 

G : {0,1}n → {0,1}n+1

G

Construction of :G′￼(s0)

Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction: PRG Length extension



Key idea: instead of directly trying to go from first distribution to second, take small steps! 

1. Construct the steps:  
A sequence of (polynomially-many) distributions  b/w the two target distributions.


2. Show that it’s easy to move between steps:  
Argue that each pair of neighboring distributions are indistinguishable.


3. Start moving:  
Conclude that the target distributions are indistinguishable via contradiction:


A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable 
C. This contradicts 2 above. 

H1, …, Hm−1

Technique: Hybrid argument
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Experiment MMInd

Challenger

1. ;  
 

2. Set 

4. Output 

b ← {0,1} k ← 𝒦

c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Multi-msg Indistinguishability Game
For every PPT “distinguishing” adversary 
A
| Pr[𝖬𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”

m0, m1

Repeat the 
interaction!
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New: Multi-msg Indistinguishability Game
For every PPT , there exists a negligible fn , 


                             

A ε

Pr A(cq) = b

k ← 𝒦, b ← {0,1}
For i in 1,…, q :

(mi,0, mi,1) ← A(ci−1)
ci = 𝖤𝗇𝖼(k, mi,b)

−
1
2

< ε(n)

Indistinguishability under  
“Chosen-Plaintext Attack” 

IND-CPA



Today’s Lecture
• Encryption for many messages


• Definition


• Attempted construction from PRGs


• PRFs


• PRPs


• Block ciphers



Stream Ciphers (PseudoOTP) insecure under CPA

Problem:  outputs same ciphertext for msg .   


So what?

an attacker can learn that two encrypted files are the same,  two encrypted packets are the 
same, etc.

Leads to significant attacks when message space is small

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if 

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)



Stream Ciphers insecure under CPA

Problem:  outputs same ciphertext for msg .   


If secret key is to be used multiple times   

given the same plaintext message twice,  
encryption must produce different outputs.

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if 

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)



How to make encryption of same messages change? 
 
Problem: If encrypting the same message twice, all 
inputs are the same: key, message.  
 
Solution: we need to add new inputs that change per 
encryption! What can we change?


• State? (e.g. counter of num msgs)


• Randomness?

Ideas for multi-message encryption



Is this secure for multiple messages? 12

:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand  to an -bit string using PRG: 

2. Discard first  bits of  to get 

3. Set 

4. Output 

𝖤𝗇𝖼(k, m, st) → c
k n + 1 s = G(k)

ℓ s s′￼

ℓ := ℓ + 1
c = s′￼⊕ m

:

1. Repeat steps 1—4 of 

2. Output 

𝖣𝖾𝖼(k, c) → m
𝖤𝗇𝖼

m = s′￼⊕ c

Approach 1: Stateful encryption



Does this work?
Ans: Yes!

Exercise: reduce to PRG security 
Idea: Encryption of -th message is PseudoOTP.


Pros:

• Relies on existing tools

• Generally fast

Cons:

• Must maintain counter of encrypted messages

• Must rerun PRG from start every time

• Sequential encryption/decryption 

i



Key  (i.e. seed )k s

  𝑏1   𝑏2   𝑏3  …   𝑏5 …  bℓ

PRG 𝑮(𝒌)

Problem: PRGs are sequential

• With a PRG, accessing the -th bit takes time .

• How to get efficient random access into output?

• That is, we want some function such that 

ℓ ℓ

F(ℓ) = ℓ-th bit
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New tool: 

Pseudorandom 
Function



Background: Random function
• Let  be an input space, and  be an output space.


• We will denote the set of all functions from  to  as 


• The number of such functions is .


• A random function from  to  is a function that is sampled uniformly at 
random from 


• Important property of every random function :


• For each ,  is uniformly and independently distributed in .

X Y

X Y 𝖥𝗇𝗌[X, Y]
|Y ||X|

X Y
𝖥𝗇𝗌[X, Y]

f

x ∈ X f(x) Y



Stateful encryption w/ RFs
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: Sample a random function  and set .𝖦𝖾𝗇(1n) → k f k := f

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = f(ℓ) ⊕ m

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = f(ℓ) ⊕ c



Does this work?
Ans: Yes! 
Idea: Each encryption is XOR-ing with output of RF; 
          i.e., XOR-ing with a uniformly random string 

Pros: 

• Relies on existing tools


• Generally fast


• No need to run RF from start!

Cons: 

• Must maintain counter of encrypted messages


• How to store a random function?
18



Encryption w/ RFs
• What’s the problem with this?

• Hint: What does a random function look like?

• Is it efficiently evaluatable?

• Does it have a short description?

19



Problem: Random Functions  
can’t be stored efficiently

A random function is a random mapping from  to . 
Simplest representation: function table

What is the size of an arbitrary mapping? 

 
 

 For each ,  possible choices;  
each choice has  bits representation

X Y

|X | log |Y |

x |Y |
log |Y |
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Problem: Random Functions  
can’t be stored efficiently

For encryption,  is too large! 
 
Let’s see why: 
 
In our case,  is message length, e.g. , . 
if we encrypt, e.g.,  1-bit messages, our key is now  
bits, i.e. same as OTP! 
 
Also,  should be large (otherwise brute force possible: try all 
possible functions).

|X | log |Y |

|Y | Y = {0,1} |Y | = 2
|X | = 220 220

|Y ||X|
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Solution: Pseudorandom functions
• Replace a real random function with a function that looks random


• 


• Intuition: a PRF is secure if  
	 a random function in  is indistinguishable from  
	 a random function in 

SF = {F(k, ⋅ ) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF

SF

Size |K|
𝖥𝗇𝗌[X, Y]

Size |Y ||X|



Secure PRFs

k ← K

f ← Fns[X,Y]
x ∈ X

f(x)  or  F(k,x)  ?

???

• Replace a real random function with a function that looks random


• 


• Intuition: a PRF is secure if  
	 a random function in  is indistinguishable from  
	 a random function in 

SF = {F(k, ⋅ ) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF



How to define PRF security?
• For PRG security, we give the adversary either a random 

string or a pseudorandom string, and ask it to figure out 
which one it is


• Can the same strategy work for PRFs?

24



PRF Security - Attempt 1

25

Challenger

1.
2. If b = 0

1. Sample 
3. If b = 1

1. Sample 
2. Set 

4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]

k ← 𝒦
f( ⋅ ) = F(k, ⋅ )

b ?= b′￼

Adv 𝒜

f
b′￼

| Pr[b = b′￼] − 1/2 | = 𝗇𝖾𝗀𝗅(n)



Problem: Random Functions  
can’t be stored efficiently

For encryption,  is too large! 
 
Let’s see why: 
 
In our case,  is message length, e.g. , . 
if we encrypt, e.g.,  1-bit messages, our key is now  
bits, i.e. same as OTP! 
 
Also,  should be large (otherwise brute force possible: try all 
possible functions).

|X | log |Y |

|Y | Y = {0,1} |Y | = 2
|X | = 220 220

|Y ||X|
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PRF Security
Challenger


1. 

2. If b = 0


1. Sample 

2. Set 


3. If b = 1

1. Sample 

2. Set 


4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

A

y
b′￼

x

| Pr[b = b′￼] − 1/2 | = 𝗇𝖾𝗀𝗅(n)



PRF Security - Attempt 2
• Q: How many questions should the adversary be allowed 

to ask?

• 1

• 2

• poly(n)

• exp(n)


• Why is 1 insufficient?

• Why is exp(n) too many?

28

Can’t tell any information from 1 query

Adv will run in exponential time!



Experiment PRFInd Challenger


1. 

2. If b = 0


1. Sample 

2. Set 


3. If b = 1

1. Sample 

2. Set 


4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv A

y
b′￼

PRF Security Game
For every PPT “distinguishing” adversary 
A
| Pr[𝖯𝖱𝖥𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”

x

Repeat the 
interaction!



Equivalent definition:
For every PPT “distinguishing” adversary 
A
| Pr[AFk(⋅) |k ← {0,1}n] − Pr[Af(⋅) | f ← 𝖥𝗎𝗇𝗌[X, Y] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”Oracle or 
“opaque” 

access



PRFs → multi-message encryption

31



• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

32



Stateful encryption w/ PRFs
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:

Sample an -bit string at random.

𝖦𝖾𝗇(1n) → k
n

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = Fk(ℓ) ⊕ m

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = Fk(ℓ) ⊕ c



Does this work?
Ans: Yes! 
Idea: Using PRF for encryption is indistinguishable from using RF; 
          So hybrid H0 is ;  
                          H1 is ; 

                          H2 is ; 
                          H3 is  
       
Pros: 
• Generally fast

• No need to run PRF from start!

Cons: 
• Must maintain counter of encrypted messages

• (Just like PRG solution)

𝖤𝗇𝖼(k, m0)
𝖤𝗇𝖼𝖱𝖥(k, m0)
𝖤𝗇𝖼𝖱𝖥(k, m0)
𝖤𝗇𝖼(k, m1)
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• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption
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: Generate a random -bit key  that defines  𝖦𝖾𝗇(1n) 𝑛 k
Fk : {0,1}ℓ → {0,1}m

: Pick a random  and  
set the ciphertext  
𝖤𝗇𝖼(k, m) r

c := (r, y = Fk(r) ⊕ m)

36

: Output 𝖣𝖾𝖼(k, c = (r, y)) Fk(r) ⊕ c

Randomized encryption w/ PRFs



Does this work?
Ans: Yes! 
Proof: next 
Pros: 
• Relies on existing tools

• Generally fast

• No need to run PRF from start!

Cons: 
• Need good randomness during encryption

37
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Security of Randomized Encryption

• Proof strategy: Focusing on 1msg security first 

: Pick a random  and set the ciphertext  𝖤𝗇𝖼(k, m) r c := (r, y = Fk(r) ⊕ m)

: Output 𝖣𝖾𝖼(k, c = (r, y)) Fk(r) ⊕ c



Single msg security says that the following dists are indistinguishable.

 and 


How to do this? Let’s create more (supposedly) indistinguishable distributions:



{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 39

Proof by hybrid argument










H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼ | r ← {0,1}n; r′￼ ← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼ | r ← {0,1}n; r′￼ ← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈

: Pick a random  and set the ciphertext  𝖤𝗇𝖼(k, m) r c := (r, y = Fk(r) ⊕ m)

: Output 𝖣𝖾𝖼(k, c = (r, y)) Fk(r) ⊕ c
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Security of Randomized Encryption

• Proof strategy: 

• 1msg security done.

• What about multi-msg security?

• Similar idea:

• Switch PRF to RF

• Argue that each encryption is OTP with fresh key (output of RF), and switch from 

encryptions of  to encryptions of .


• Caveat: what if we sample the same  for two different ciphertexts?

• No longer OTP.

• Thankfully, if input space of PRF is large, this happens with negligible prob.

mi,0 mi,1

r

: Pick a random  and set the ciphertext  𝖤𝗇𝖼(k, m) r c := (r, y = Fk(r) ⊕ m)

: Output 𝖣𝖾𝖼(k, c = (r, y)) Fk(r) ⊕ c



So far
Multi-msg security via randomized encryption 
Pros: 
• Relies on existing tools

• Generally fast

• No need to run PRF from start!

Cons: 
• Ciphertext is ~2x larger: 

• Can only encrypt fixed-size  bit msg at a time

• Thus, sending a message of, say,  bits, 

requires -sized ciphertext

(r, m ⊕ Fk(r))
n

10n
20n
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