CIS 5560

Cryptography
Lecture 5

Announcements

* HW 1 out yesterday
 Due Friday, Feb 6 at 5PM on Gradescope
* Covers PRGs, OTPs, indistinguishability

« HWO due this Friday (Jan 30)

Recap of last lecture

Construction: PRG Length extension

Let G : {0,1}" = {0,1}Y"! be a PRG

Goal: use G to generate many pseudorandom bits.

Construction of G'(sy):

4 N S ¢ N 9 4 NS 1)
seced=§5,— G — G —— e e e | G — G
U l) U l) U l) U l)
bl b2 bm—l bm

Technique: Hybrid argument

Key idea: instead of directly trying to go from first distribution to second, take small steps!

1. Construct the steps:
A sequence of (polynomially-many) distributions H,, ..., H, _, b/w the two target distributions.

2. Show that it’s easy to move between steps:
Argue that each pair of neighboring distributions are indistinguishable.

3. Start moving:
Conclude that the target distributions are indistinguishable via contradiction:

A. Assume the target distributions are distinguishable
B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

Proof that G’ is a PRG

PRG Indistinguishability of G says that the following distributions are indistinguishable:
(G)|x « {0,1}"} and {y|y < {0,1}"*}
Our goal: show that {G'(x) |x < {0,1}"} and {y|y < {0,1}"} are indistinguishable

Step 1: create more (supposedly) indistinguishable distributions:
Hy = {G'(x) [x < {0,1}"}

= {running G m times}

H; = {Output i uniform bits and run G m — i times }

H,=1yly < 10,1}"}

50)

L.

Sit1

Proof that G’ is a PRG

Step 2: Showing that H; and H,_, are indistinguishable:

Proof that G’ is a PRG

Step 2: Showing that H; and H;_, are indistinguishable:

Proof by contradiction:

Assume they are not. That is, there exists a PPT distinguisher D against them.
Then we will construct a distinguisher D’ against G as follows:

D'(y = bl s):

1. Sample i random bits by, ..., b;.
2. Setb,, | :=0.

3. Runm — i — 1 iterations of G using s, as seed, and let b, », ..., b,, be the result.
4

. Run D(b, ..., b,) and output whatever it outputs.

Now clearly, when y is pseudorandom, the bits are distributed as in Hi, while if y is random, then they are
distributed as in H,, ;. Hence if D distinguishes, so does D".

Since this contradicts G’s indistinguishability, it must be the case that no such D exists.

Aybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let py, py, ..., p,, b€ probability of outputting O in
Hy, Hy,....,H,

If po — p,,, 1S noticeable,

then there is an i such that p; — p, . ; is noticeable.

Proof: 1/p(n) < |p,,—Pol
— |(pm _pm—l) + (pm—l _pm—Z) + e (pl _p())‘
<|Pn—=Pu-D |+ 1Pp_1—Pp2) | + -+ (1 —Po) |

Notice that each term in the series is the advantage of

distinguishing the i-th pair.
Cannot be that all advantages are negligible, as their sum is
noticeable. Hence at least one must be noticeable.

Today’s Lecture

* Encryption for many messages

* Definition

e Attempted construction from PRGs
* PRFs

* PRPs

* Block ciphers

So far: Secure Communication for 1 Message

=

Ciphertext ¢ < Enc(k, m)

y Key k

Eavesdropper “Eve”

Alice wants to send a message m to
Bob without revealing it to Eve.

SETUP: Alice and Bob meet beforehand to agree on a
secret key k.

What about secure conversat/ons’?

Alice Bob

Key k Key k

Eavesdropper “Eve”

Alice and Bob want to send many messages to each other,
without revealing any of them to Eve.
Requirement: Must use the same key!

What about secure conversat/ons’?

Alice ! § Bob
- §
Key k § § Key k
For analysis:
all messages are from
Alice

Eavesdropper “Eve”

Alice and Bob want to send many messages to each other,
without revealing any of them to Eve.
Requirement: Must use the same key!

Construction Attempt #1: Stream Ciphers

Gen(1%) - k:

1. Sample an n-bit string at random.

Enc(k,m) — c:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Outputc=sP m

Dec(k, c) — m:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Outputm =sPc

Is this secure for multiple messages?

No! It becomes a two-time pad!

Multi-message Indistinguishabillity

 How to formalize? Can we generalize the old definition?

For every (mgy, my, ..., my), (my, my, ..., m,), for every PPT adversary A

Enc(k, m) Enc(k, m)
Pr |A : =11 - Pr |A : =11 =¢ell)
e Enc(k, m,) e Enc(k, my,)
* Problems:

 Messages are fixed ahead of time; cannot depend on cipher text

» Unwieldy when £ grows.

New Style of Definition:
Game-based Security

Old: Single-message Indistinguishability

For every my, m,, for every PPT “distinguishing” adversary A

there exists a negligible function € such that

Pr [A(Enc(k,my)) = 1] — Pr [A(Enc(k,m,)) = 1]| = &(4)
k—H k—H

17

New: Single-msg Indistinguishability Game
For every my, m,, for every PPT “distinguishing” adversary A

| Pr[SMInd = 1] — Pr[random guess] | = negl(4)

Experiment SMind
Adv A Challenger

1.0 <« {01}k« A
2. Set ¢ := Enc(k, m,,)

4. Output b =}

New: Single-msg Indistinguishability Game
For every PPT “distinguishing” adversary A

| Pr[SMInd = 1] — Pr[random guess] | = negl(4)

Experiment SMind
Adv A Challenger

1.0 <« {01}k« A

@ 2. Set ¢ := Enc(k, m,,)

4. Output b =}

New: Single-msg Indistinguishability Game
For every PPT “distinguishing” adversary &f

b {0,1},k « A

(my, my) < A 1
' ¢ = Enctk.my)| ~ 2| = "o e

b’ — A(c)

20

New: Single-msg Indistinguishability Game
We will show that any scheme that satisfies one defn automatically satisfies other.

Proof sketch.

Denote by € the advantage of any adversary A against the old defn.
We will show that the advantage of A in the new defn is €/2.

Let p, = Pr[A(Enc(k, m,) = 0], and let p;, = Pr[A(Enc(k,m;) = O]. Clearly, |py—p;| =€

Now, A succeeds in new game when it guess correctly. i.e., its success prob is

Pr[A(Enc(k,m,) =0|b =0]Pr[b =0] + Pr[A(Enc(k,m,)=1|b=1]Pr[b=1].

1 1 1 +py— Py
But this is exactl — 4+ (1 — C—_ = .
YPo- > (I —pp) > 5
1 + py — 1
Its advantage is thus p;) d > = e/2.

21

Game-based
Multi-message
Indistinguishability

New: Multi-msg Indistinguishability Game
For every PPT “distinguishing” adversary A

| Pr[MMInd = 1] — Pr[random guess] | = negl(/l

Experiment MMInd

Adv A Challenger
Interaction!

My, m; 1.0 < {0,1}; k « A

—————

@ ¢ 2. Set ¢ := Enc(k, m,,)
b/
—_—

4. Output b =}

23

New: Multi-msg Indistinguishability Game

For every PPT A, there exists a negligible fn &,

k< H,b < {0,1}
Foriinl,...,q: 1
Pr |A(c) =D (m; 0,113 1) < A(ciy) ~5 < &(n)
¢; = Enc(k, m; ;)

Indistinguishability under
“Chosen-Plaintext Attack”
IND-CPA

24

Stream Ciphers insecure under CPA

Problem: Enc(k, m) outputs same ciphertext for msg m.

my, my € M
Challenger
CO <« EnC(k, mo)
k< A
my, m; € M
output 0 ¢ < Enc(k, my)

ifc=C0

So what?

an attacker can learn that two encrypted files are the same, two encrypted packets are the
same, etc.

Leads to significant attacks when message space is small

Stream Ciphers insecure under CPA

Problem: Enc(k, m) outputs same ciphertext for msg m.

my, my € M
Challenger
CO <« EnC(k, mo)
k< A
my, m; € M
output 0 ¢ < Enc(k, my)

ifc=C0

If secret key Is to be used multiple times

given the same plaintext message twice,
encryption must produce different outputs.

ldeas for multi-message encryption

How to make encryption of same
messages change?

o State? (e.g. counter of num msgs)

e Randomness?

Approach 1: Stateful encryption

Gen(1%) —= k:

1. Sample an n-bit string at random.

Enc(k, m, st) — c:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Discard first £ bits of s to get s’
3. Set :=¢ + 1
4. Outputc =s" P m

Dec(k, c) — m:
1. Repeat steps 1—4 of Enc
2. Outputm =s" c

Is this secure for multiple messages?

Does this work?

Ans: Yes!
Exercise: reduce to PRG security

Pros:

* Relies on existing tools

 Generally fast

Cons:

 Must maintain counter of encrypted messages
 Must rerun PRG from start every time

* Sequential encryption/decryption

Problem: PRGs are sequential

PRG G(k) Key k (i.e. seed)

b1 b2 b3 b5 bf

. With a PRG, accessing the £-th bit takes time .
» How to get efficient random access into output?

- That is, we want some function such that F(£) = £-th bit

New tool:

Pseudorandom
Function

Background: Random function

» Let X be an input space, and Y be an output space.
« We will denote the set of all functions from X to Y as Fns|X, Y|
e The number of such functions is | Y| Xl

* A random function from X to Y is a function that is sampled uniformly at
random from Fns|X, Y]

 Important property of every random function f-

» For each x € X, f(x) is uniformly and independently distributed in Y.

Stateful encryption w/ RFs

Gen(1") — k: Sample a random function f and set k :=f.

Enc(k, m, st) — c:
1. Interpret St as number £ of messages encrypted so far.
2. Output ¢ = () & m

Dec(k, ¢, st) — m:
1. Interpret st as number £ of messages encrypted so far.
2. Output m = f(£) ® c

33

Does this work?

Ans: Yes!

Pros:

* Relies on existing tools

 Generally fast

 No need to run RF from start!

Cons:

 Must maintain counter of encrypted messages

 How to store a random function?

34

Problem: Random Functions
can’t be stored efficiently

A random function is a random mapping from X to Y.

Simplest representation: function table

What is the size of an arbitrary mapping?

| X|log| Y]

For each x, | Y| possible choices;
each choice has log | Y| bits representation

35

Problem: Random Functions
can’t be stored efficiently

For encryption, | X |log| Y| is too large!

Let’s see why:
In our case, | Y| is message length, e.g. Y = {0,1}, | Y| = 2.
if we encrypt, e.g., | X| = 220 1 _pit messages, our key is now 220

bits, I.e. same as OTP!

Also, | Y] Xl should be large (otherwise brute force possible: try all
possible functions).

36

Solution: Pseudorandom functions

 Replace a real random function with a function that looks random
e S, ={F(k,-)|ke X} CFns[X,Y]

* |ntuition: a PRF is secure if
a random function in Fns[X, Y| is indistinguishable from

a random function in S
Size [K]

Size | Y| X

Secure PRFs

 Replace a real random function with a function that looks random
o S.={F(k,-)|ke€ K} C Fns[X,Y]

* |ntuition: a PRF is secure if
a random function in Fns[X, Y| is indistinguishable from

a random function in S

X e X

Catals
f(x)orF(k,x)?

PRF Security

Challenger

1.b < {0,1}

2.1fb=0
1. Sample f <« Fns[X, Y]
2. Sety := f(x)

3. 1fb=1
1. Sample k « KA

Y 2. Sety := Fi(x)
b/

4.b = b

Pr|b = b'] = 1/2 + negl(n)

PRF Security Game

For every PPT “distinguishing” adversary A

| Pr[PRFInd = 1] — Pr{random guess] | = negl(1)

Experiment PRFInd Challenger

Repeat th
Adv A 1.b < {0,1}

2.1fb=0
1. Sample f <« Fns[X, Y]

2. Sety ;= f(x)

Y 3.1fb=1
b’ 1. Sample k <« A
: ’ 2. Sety := F(x)

4.b = b’

40

An example

Let K=X={0,1}n.
Consider the PRF: F(k, x) =k ® x defined over (K, X, X)

Let’s show that F IS insecure:

Adversary &/ : (1) choose arbitrary Xg # X4 € X
(2) query for 'y =1(Xo) and y; = f(x4)

(3) output 0" if yo ® Y1 =X ® Xq, else 1’

Pr(EXP(0) = 0] = 1 PrlEXP(1) = 0] = 1/2n
= Advpge[/,Fl =1 — (1/2n) (not negligible)

PRFs = multi-message encryption

ldeas for multi-message encryption

e State? (e.g. counter of num msgs)

e Randomness?

