
CIS 5560

Lecture 5
Cryptography
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Announcements

• HW 1 out yesterday 

• Due Friday, Feb 6 at 5PM on Gradescope


• Covers PRGs, OTPs, indistinguishability


• HW0 due this Friday (Jan 30)



Recap of last lecture
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Let  be a PRG


Goal: use  to generate many pseudorandom bits. 

G : {0,1}n → {0,1}n+1

G

Construction of :G′￼(s0)

Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction: PRG Length extension



Key idea: instead of directly trying to go from first distribution to second, take small steps! 

1. Construct the steps:  
A sequence of (polynomially-many) distributions  b/w the two target distributions.


2. Show that it’s easy to move between steps:  
Argue that each pair of neighboring distributions are indistinguishable.


3. Start moving:  
Conclude that the target distributions are indistinguishable via contradiction:


A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable 
C. This contradicts 2 above. 

H1, …, Hm−1

Technique: Hybrid argument
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PRG Indistinguishability of  says that the following distributions are indistinguishable:


 and 


Our goal: show that  and  are indistinguishable


Step 1: create more (supposedly) indistinguishable distributions:




     





G
{G(x) |x ← {0,1}n} {y |y ← {0,1}n+1}

{G′￼(x) |x ← {0,1}n} {y |y ← {0,1}m}

H0 = {G′￼(x) |x ← {0,1}n}
= {running G m times}

Hi = {Output i uniform bits and run G m − i times}

Hm = {y |y ← {0,1}m} 6

Proof that  is a PRGG′￼



Step 2: Showing that  and  are indistinguishable:Hi Hi−1
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Proof that  is a PRGG′￼

U1

b1

U1

bi

… si+1 G

bm

G

bi+1

s0
…Hi =

U1

b1

U1… si+2 G

bm

G
s0

…

bi+2bi+1

U1

bi

Hi+1 =



Step 2: Showing that  and  are indistinguishable: 
 
Proof by contradiction:

Assume they are not. That is, there exists a PPT distinguisher  against them. 
Then we will construct a distinguisher  against  as follows: 
 

:


1. Sample  random bits .


2. Set .


3. Run  iterations of  using  as seed, and let  be the result.


4. Run  and output whatever it outputs.


Now clearly, when  is pseudorandom, the bits are distributed as in , while if  is random, then they are 
distributed as in . Hence if  distinguishes, so does . 


Since this contradicts ’s indistinguishability, it must be the case that no such  exists.

Hi Hi−1

D
D′￼ G

D′￼(y = b ||s0)
i b1, …, bi

bi+1 := b
m − i − 1 G s0 bi+2, …, bm

D(b1, …, bm)

y Hi y
Hi+1 D D′￼

G D
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Proof that  is a PRGG′￼



B. Must be the case that an intermediate pair of distributions is distinguishable

Hybrid argument
Lemma: Let  be probability of outputting 0 in

 
p0, p1, …, pm

H0, H1, …, Hm
If  is noticeable,  
then there is an  such that  is noticeable.

p0 − pm
𝑖 pi − pi+1

Proof: 1/p(n) ≤ |pm − p0 |
= | (pm − pm−1) + (pm−1 − pm−2) + ⋯ + (p1 − p0) |
≤ | (pm − pm−1) | + | (pm−1 − pm−2) | + ⋯ + | (p1 − p0) |

Notice that each term in the series is the advantage of 
distinguishing the -th pair. 
Cannot be that all advantages are negligible, as their sum is 
noticeable. Hence at least one must be noticeable.

i
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Today’s Lecture
• Encryption for many messages


• Definition


• Attempted construction from PRGs


• PRFs


• PRPs


• Block ciphers



Ciphertext c ← 𝖤𝗇𝖼(k, m)
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So far: Secure Communication for 1 Message

m

Key k Key k

Eavesdropper “Eve”

Alice wants to send a message  to 
Bob without revealing it to Eve. 

m

SETUP: Alice and Bob meet beforehand to agree on a 
secret key .k
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What about secure conversations?

Eavesdropper “Eve”

Alice  
 

Key k

Bob  
 

Key k
c1

cn

c0

Alice and Bob want to send many messages to each other, 

without revealing any of them to Eve. 


Requirement: Must use the same key!
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What about secure conversations?

Eavesdropper “Eve”

Alice  
 

Key k

Bob  
 

Key k
c1

cn

c0

Alice and Bob want to send many messages to each other, 

without revealing any of them to Eve. 


Requirement: Must use the same key!

For analysis:
all messages are from 

Alice



Construction Attempt #1: Stream Ciphers

Is this secure for multiple messages?
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:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand  to an -bit string using PRG: 

2. Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m

:

1. Expand  to an -bit string using PRG: 

2. Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

No! It becomes a two-time pad!
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Multi-message Indistinguishability
• How to formalize? Can we generalize the old definition? 

 
 
 
 
 
 
 

• Problems:


• Messages are fixed ahead of time; cannot depend on cipher text


• Unwieldy when  grows.ℓ

For every , for every PPT adversary (m0, m1, …, mℓ), (m′￼0, m′￼1, …, m′￼ℓ) A

Pr
k←𝒦

A
𝖤𝗇𝖼(k, m0)

⋮
𝖤𝗇𝖼(k, mℓ)

= 1 − Pr
k←𝒦

A
𝖤𝗇𝖼(k, m′￼0)

⋮
𝖤𝗇𝖼(k, m′￼ℓ)

= 1 = ε(λ)



New Style of Definition:  
Game-based Security
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Old: Single-message Indistinguishability

For every , for every PPT “distinguishing” adversary 


there exists a negligible function  such that 

m0, m1 A
ε

Pr
k←𝒦

[A(𝖤𝗇𝖼(k, m0)) = 1] − Pr
k←𝒦

[A(𝖤𝗇𝖼(k, m1)) = 1] = ε(λ)
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Experiment SMInd

Challenger

1. ; 
2. Set 

4. Output 

b ← {0,1} k ← 𝒦
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Single-msg Indistinguishability Game
For every , for every PPT “distinguishing” adversary 
m0, m1 A

| Pr[𝖲𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”



Experiment SMInd

Challenger

1. ;  
 

2. Set 

4. Output 

b ← {0,1} k ← 𝒦

c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Single-msg Indistinguishability Game
For every PPT “distinguishing” adversary 
A
| Pr[𝖲𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”

m0, m1



For every PPT “distinguishing” adversary 
𝒜

Pr b = b′￼

b ← {0,1}, k ← 𝒦
(m0, m1) ← A

c := 𝖤𝗇𝖼(k, mb)
b′￼ ← A(c)

−
1
2

= 𝗇𝖾𝗀𝗅(λ)
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New: Single-msg Indistinguishability Game

“Advantage”
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New: Single-msg Indistinguishability Game
We will show that any scheme that satisfies one defn automatically satisfies other. 
 
Proof sketch. 

Denote by  the advantage of any adversary A against the old defn.  
We will show that the advantage of A in the new defn is . 

Let , and let . Clearly,  

Now, A succeeds in new game when it guess correctly. i.e., its success prob is 


.


But this is exactly .


Its advantage is thus .

ϵ
ϵ/2

p0 = Pr[A(𝖤𝗇𝖼(k, m0) = 0] p1 = Pr[A(𝖤𝗇𝖼(k, m1) = 0] |p0 − p1 | = ϵ

Pr[A(𝖤𝗇𝖼(k, mb) = 0 |b = 0] Pr[b = 0] + Pr[A(𝖤𝗇𝖼(k, mb) = 1 |b = 1] Pr[b = 1]

p0 ⋅
1
2

+ (1 − p1) ⋅
1
2

=
1 + p0 − p1

2

1 + p0 − p1

2
−

1
2

= ϵ/2



Game-based 
Multi-message 

Indistinguishability
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Experiment MMInd

Challenger

1. ;  
 

2. Set 

4. Output 

b ← {0,1} k ← 𝒦

c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Multi-msg Indistinguishability Game
For every PPT “distinguishing” adversary 
A
| Pr[𝖬𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”

m0, m1

Repeat the 
interaction!
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New: Multi-msg Indistinguishability Game
For every PPT , there exists a negligible fn , 


                             

A ε

Pr A(cq) = b

k ← 𝒦, b ← {0,1}
For i in 1,…, q :

(mi,0, mi,1) ← A(ci−1)
ci = 𝖤𝗇𝖼(k, mi,b)

−
1
2

< ε(n)

Indistinguishability under  
“Chosen-Plaintext Attack” 

IND-CPA



Stream Ciphers insecure under CPA

Problem:  outputs same ciphertext for msg .   


So what?

an attacker can learn that two encrypted files are the same,  two encrypted packets are the 
same, etc.

Leads to significant attacks when message space is small

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if 

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)



Stream Ciphers insecure under CPA

Problem:  outputs same ciphertext for msg .   


If secret key is to be used multiple times   

given the same plaintext message twice,  
encryption must produce different outputs.

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if 

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)



How to make encryption of same 
messages change?


• State? (e.g. counter of num msgs)


• Randomness?

Ideas for multi-message encryption



Is this secure for multiple messages? 28

:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand  to an -bit string using PRG: 

2. Discard first  bits of  to get 

3. Set 

4. Output 

𝖤𝗇𝖼(k, m, st) → c
k n + 1 s = G(k)

ℓ s s′￼

ℓ := ℓ + 1
c = s′￼⊕ m

:

1. Repeat steps 1—4 of 

2. Output 

𝖣𝖾𝖼(k, c) → m
𝖤𝗇𝖼

m = s′￼⊕ c

Approach 1: Stateful encryption



Does this work?
Ans: Yes!

Exercise: reduce to PRG security


Pros:

• Relies on existing tools

• Generally fast

Cons:

• Must maintain counter of encrypted messages

• Must rerun PRG from start every time

• Sequential encryption/decryption 



Key  (i.e. seed )k s

  𝑏1   𝑏2   𝑏3  …   𝑏5 …  bℓ

PRG 𝑮(𝒌)

Problem: PRGs are sequential

• With a PRG, accessing the -th bit takes time .

• How to get efficient random access into output?

• That is, we want some function such that 

ℓ ℓ

F(ℓ) = ℓ-th bit
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New tool: 

Pseudorandom 
Function



Background: Random function
• Let  be an input space, and  be an output space.


• We will denote the set of all functions from  to  as 


• The number of such functions is .


• A random function from  to  is a function that is sampled uniformly at 
random from 


• Important property of every random function :


• For each ,  is uniformly and independently distributed in .

X Y

X Y 𝖥𝗇𝗌[X, Y]
|Y ||X|

X Y
𝖥𝗇𝗌[X, Y]

f

x ∈ X f(x) Y



Stateful encryption w/ RFs
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: Sample a random function  and set .𝖦𝖾𝗇(1n) → k f k := f

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = f(ℓ) ⊕ m

:

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = f(ℓ) ⊕ c



Does this work?
Ans: Yes! 

Pros: 

• Relies on existing tools


• Generally fast


• No need to run RF from start!

Cons: 

• Must maintain counter of encrypted messages


• How to store a random function?
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Problem: Random Functions  
can’t be stored efficiently

A random function is a random mapping from  to . 
Simplest representation: function table

What is the size of an arbitrary mapping? 

 
 

 For each ,  possible choices;  
each choice has  bits representation

X Y

|X | log |Y |

x |Y |
log |Y |
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Problem: Random Functions  
can’t be stored efficiently

For encryption,  is too large! 
 
Let’s see why: 
 
In our case,  is message length, e.g. , . 
if we encrypt, e.g.,  1-bit messages, our key is now  
bits, i.e. same as OTP! 
 
Also,  should be large (otherwise brute force possible: try all 
possible functions).

|X | log |Y |

|Y | Y = {0,1} |Y | = 2
|X | = 220 220

|Y ||X|
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Solution: Pseudorandom functions
• Replace a real random function with a function that looks random


• 


• Intuition: a PRF is secure if  
	 a random function in  is indistinguishable from  
	 a random function in 

SF = {F(k, ⋅ ) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF

SF

Size |K|
𝖥𝗇𝗌[X, Y]

Size |Y ||X|



Secure PRFs

k ← K

f ← Fns[X,Y]
x ∈ X

f(x)  or  F(k,x)  ?

???

• Replace a real random function with a function that looks random


• 


• Intuition: a PRF is secure if  
	 a random function in  is indistinguishable from  
	 a random function in 

SF = {F(k, ⋅ ) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF



PRF Security
Challenger


1. 

2. If b = 0


1. Sample 

2. Set 


3. If b = 1

1. Sample 

2. Set 


4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

A

y
b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)



Experiment PRFInd Challenger


1. 

2. If b = 0


1. Sample 

2. Set 


3. If b = 1

1. Sample 

2. Set 


4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv A

y
b′￼

PRF Security Game
For every PPT “distinguishing” adversary 
A
| Pr[𝖯𝖱𝖥𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)
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“Advantage”

x

Repeat the 
interaction!



• Let K = X = {0,1}n .    


• Consider the PRF:     F(k, x) = k ⊕ x     defined over  (K, X, X)


•  Let’s show that F is insecure:


•   Adversary :	(1) choose arbitrary  x0 ≠ x1 ∈ X  

• 	 (2) query for   y0 = f(x0)   and   y1 = f(x1) 

• 	 (3) output `0’  if  y0 ⊕ y1 = x0 ⊕ x1 ,   else `1’

𝒜 

An example

	 ⟹     AdvPRF[ ,F]    (not negligible)𝒜 = 1  −  (1/2𝑛)      
Pr[EXP(0) = 0]  1= Pr[EXP(1) = 0]  1/2n=



PRFs → multi-message encryption
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• State? (e.g. counter of num msgs)


• Randomness?

Ideas for multi-message encryption


