
CIS 5560

Lecture 5
Cryptography

1

Announcements

• HW 1 out yesterday

• Due Friday, Feb 6 at 5PM on Gradescope

• Covers PRGs, OTPs, indistinguishability

• HW0 due this Friday (Jan 30)

Recap of last lecture

4

Let be a PRG

Goal: use to generate many pseudorandom bits.

G : {0,1}n → {0,1}n+1

G

Construction of :G′￼(s0)

Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction: PRG Length extension

Key idea: instead of directly trying to go from first distribution to second, take small steps! 

1. Construct the steps:  
A sequence of (polynomially-many) distributions b/w the two target distributions.

2. Show that it’s easy to move between steps:  
Argue that each pair of neighboring distributions are indistinguishable.

3. Start moving:  
Conclude that the target distributions are indistinguishable via contradiction:

A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

H1, …, Hm−1

Technique: Hybrid argument

5

PRG Indistinguishability of says that the following distributions are indistinguishable:

 and

Our goal: show that and are indistinguishable

Step 1: create more (supposedly) indistinguishable distributions:

G
{G(x) |x ← {0,1}n} {y |y ← {0,1}n+1}

{G′￼(x) |x ← {0,1}n} {y |y ← {0,1}m}

H0 = {G′￼(x) |x ← {0,1}n}
= {running G m times}

Hi = {Output i uniform bits and run G m − i times}

Hm = {y |y ← {0,1}m} 6

Proof that is a PRGG′￼

Step 2: Showing that and are indistinguishable:Hi Hi−1

7

Proof that is a PRGG′￼

U1

b1

U1

bi

… si+1 G

bm

G

bi+1

s0
…Hi =

U1

b1

U1… si+2 G

bm

G
s0

…

bi+2bi+1

U1

bi

Hi+1 =

Step 2: Showing that and are indistinguishable: 
 
Proof by contradiction:

Assume they are not. That is, there exists a PPT distinguisher against them. 
Then we will construct a distinguisher against as follows: 
 

:

1. Sample random bits .

2. Set .

3. Run iterations of using as seed, and let be the result.

4. Run and output whatever it outputs.

Now clearly, when is pseudorandom, the bits are distributed as in , while if is random, then they are
distributed as in . Hence if distinguishes, so does .

Since this contradicts ’s indistinguishability, it must be the case that no such exists.

Hi Hi−1

D
D′￼ G

D′￼(y = b ||s0)
i b1, …, bi

bi+1 := b
m − i − 1 G s0 bi+2, …, bm

D(b1, …, bm)

y Hi y
Hi+1 D D′￼

G D
8

Proof that is a PRGG′￼

B. Must be the case that an intermediate pair of distributions is distinguishable

Hybrid argument
Lemma: Let be probability of outputting 0 in

p0, p1, …, pm

H0, H1, …, Hm
If is noticeable,  
then there is an such that is noticeable.

p0 − pm
𝑖 pi − pi+1

Proof: 1/p(n) ≤ |pm − p0 |
= | (pm − pm−1) + (pm−1 − pm−2) + ⋯ + (p1 − p0) |
≤ | (pm − pm−1) | + | (pm−1 − pm−2) | + ⋯ + | (p1 − p0) |

Notice that each term in the series is the advantage of
distinguishing the -th pair. 
Cannot be that all advantages are negligible, as their sum is
noticeable. Hence at least one must be noticeable.

i

9

Today’s Lecture
• Encryption for many messages

• Definition

• Attempted construction from PRGs

• PRFs

• PRPs

• Block ciphers

Ciphertext c ← 𝖤𝗇𝖼(k, m)

11

So far: Secure Communication for 1 Message

m

Key k Key k

Eavesdropper “Eve”

Alice wants to send a message to
Bob without revealing it to Eve.

m

SETUP: Alice and Bob meet beforehand to agree on a
secret key .k

12

What about secure conversations?

Eavesdropper “Eve”

Alice  
 

Key k

Bob  
 

Key k
c1

cn

c0

Alice and Bob want to send many messages to each other,

without revealing any of them to Eve.

Requirement: Must use the same key!

13

What about secure conversations?

Eavesdropper “Eve”

Alice  
 

Key k

Bob  
 

Key k
c1

cn

c0

Alice and Bob want to send many messages to each other,

without revealing any of them to Eve.

Requirement: Must use the same key!

For analysis:
all messages are from

Alice

Construction Attempt #1: Stream Ciphers

Is this secure for multiple messages?

14

:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand to an -bit string using PRG:

2. Output

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m

:

1. Expand to an -bit string using PRG:

2. Output

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

No! It becomes a two-time pad!

15

Multi-message Indistinguishability
• How to formalize? Can we generalize the old definition? 

 
 
 
 
 
 
 

• Problems:

• Messages are fixed ahead of time; cannot depend on cipher text

• Unwieldy when grows.ℓ

For every , for every PPT adversary (m0, m1, …, mℓ), (m′￼0, m′￼1, …, m′￼ℓ) A

Pr
k←𝒦

A
𝖤𝗇𝖼(k, m0)

⋮
𝖤𝗇𝖼(k, mℓ)

= 1 − Pr
k←𝒦

A
𝖤𝗇𝖼(k, m′￼0)

⋮
𝖤𝗇𝖼(k, m′￼ℓ)

= 1 = ε(λ)

New Style of Definition:
Game-based Security

16

Old: Single-message Indistinguishability

For every , for every PPT “distinguishing” adversary

there exists a negligible function such that 

m0, m1 A
ε

Pr
k←𝒦

[A(𝖤𝗇𝖼(k, m0)) = 1] − Pr
k←𝒦

[A(𝖤𝗇𝖼(k, m1)) = 1] = ε(λ)

17

Experiment SMInd

Challenger

1. ;
2. Set

4. Output

b ← {0,1} k ← 𝒦
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Single-msg Indistinguishability Game
For every , for every PPT “distinguishing” adversary
m0, m1 A

| Pr[𝖲𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)

18

“Advantage”

Experiment SMInd

Challenger

1. ;  
 

2. Set

4. Output

b ← {0,1} k ← 𝒦

c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Single-msg Indistinguishability Game
For every PPT “distinguishing” adversary
A
| Pr[𝖲𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)

19

“Advantage”

m0, m1

For every PPT “distinguishing” adversary
𝒜

Pr b = b′￼

b ← {0,1}, k ← 𝒦
(m0, m1) ← A

c := 𝖤𝗇𝖼(k, mb)
b′￼ ← A(c)

−
1
2

= 𝗇𝖾𝗀𝗅(λ)

20

New: Single-msg Indistinguishability Game

“Advantage”

21

New: Single-msg Indistinguishability Game
We will show that any scheme that satisfies one defn automatically satisfies other. 
 
Proof sketch.

Denote by the advantage of any adversary A against the old defn.  
We will show that the advantage of A in the new defn is . 

Let , and let . Clearly,  

Now, A succeeds in new game when it guess correctly. i.e., its success prob is

.

But this is exactly .

Its advantage is thus .

ϵ
ϵ/2

p0 = Pr[A(𝖤𝗇𝖼(k, m0) = 0] p1 = Pr[A(𝖤𝗇𝖼(k, m1) = 0] |p0 − p1 | = ϵ

Pr[A(𝖤𝗇𝖼(k, mb) = 0 |b = 0] Pr[b = 0] + Pr[A(𝖤𝗇𝖼(k, mb) = 1 |b = 1] Pr[b = 1]

p0 ⋅
1
2

+ (1 − p1) ⋅
1
2

=
1 + p0 − p1

2

1 + p0 − p1

2
−

1
2

= ϵ/2

Game-based
Multi-message

Indistinguishability

22

Experiment MMInd

Challenger

1. ;  
 

2. Set

4. Output

b ← {0,1} k ← 𝒦

c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Adv A

c
b′￼

New: Multi-msg Indistinguishability Game
For every PPT “distinguishing” adversary
A
| Pr[𝖬𝖬𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)

23

“Advantage”

m0, m1

Repeat the
interaction!

24

New: Multi-msg Indistinguishability Game
For every PPT , there exists a negligible fn ,

A ε

Pr A(cq) = b

k ← 𝒦, b ← {0,1}
For i in 1,…, q :

(mi,0, mi,1) ← A(ci−1)
ci = 𝖤𝗇𝖼(k, mi,b)

−
1
2

< ε(n)

Indistinguishability under
“Chosen-Plaintext Attack”

IND-CPA

Stream Ciphers insecure under CPA

Problem: outputs same ciphertext for msg .

So what?

an attacker can learn that two encrypted files are the same, two encrypted packets are the
same, etc.

Leads to significant attacks when message space is small

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)

Stream Ciphers insecure under CPA

Problem: outputs same ciphertext for msg .

If secret key is to be used multiple times

given the same plaintext message twice,  
encryption must produce different outputs.

𝖤𝗇𝖼(k, m) m

Challenger 
 

k ← 𝒦

 

 
 

output 0

if

A

c = c0

m0, m1 ∈ M

c ← 𝖤𝗇𝖼(k, mb)

m0, m0 ∈ M
c0 ← 𝖤𝗇𝖼(k, m0)

How to make encryption of same
messages change?

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

Is this secure for multiple messages? 28

:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand to an -bit string using PRG:

2. Discard first bits of to get

3. Set

4. Output

𝖤𝗇𝖼(k, m, st) → c
k n + 1 s = G(k)

ℓ s s′￼

ℓ := ℓ + 1
c = s′￼⊕ m

:

1. Repeat steps 1—4 of

2. Output

𝖣𝖾𝖼(k, c) → m
𝖤𝗇𝖼

m = s′￼⊕ c

Approach 1: Stateful encryption

Does this work?
Ans: Yes!

Exercise: reduce to PRG security

Pros:

• Relies on existing tools

• Generally fast

Cons:

• Must maintain counter of encrypted messages

• Must rerun PRG from start every time

• Sequential encryption/decryption

Key (i.e. seed)k s

 𝑏1 𝑏2 𝑏3 … 𝑏5 … bℓ

PRG 𝑮(𝒌)

Problem: PRGs are sequential

• With a PRG, accessing the -th bit takes time .

• How to get efficient random access into output?

• That is, we want some function such that

ℓ ℓ

F(ℓ) = ℓ-th bit

31

New tool:

Pseudorandom
Function

Background: Random function
• Let be an input space, and be an output space.

• We will denote the set of all functions from to as

• The number of such functions is .

• A random function from to is a function that is sampled uniformly at
random from

• Important property of every random function :

• For each , is uniformly and independently distributed in .

X Y

X Y 𝖥𝗇𝗌[X, Y]
|Y ||X|

X Y
𝖥𝗇𝗌[X, Y]

f

x ∈ X f(x) Y

Stateful encryption w/ RFs

33

: Sample a random function and set .𝖦𝖾𝗇(1n) → k f k := f

:

1. Interpret as number of messages encrypted so far.

2. Output

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = f(ℓ) ⊕ m

:

1. Interpret as number of messages encrypted so far.

2. Output

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = f(ℓ) ⊕ c

Does this work?
Ans: Yes!

Pros:

• Relies on existing tools

• Generally fast

• No need to run RF from start!

Cons:

• Must maintain counter of encrypted messages

• How to store a random function?

34

Problem: Random Functions
can’t be stored efficiently

A random function is a random mapping from to .
Simplest representation: function table

What is the size of an arbitrary mapping? 

 
 

 For each , possible choices;  
each choice has bits representation

X Y

|X | log |Y |

x |Y |
log |Y |

35

Problem: Random Functions
can’t be stored efficiently

For encryption, is too large! 
 
Let’s see why: 
 
In our case, is message length, e.g. , . 
if we encrypt, e.g., 1-bit messages, our key is now
bits, i.e. same as OTP! 
 
Also, should be large (otherwise brute force possible: try all
possible functions).

|X | log |Y |

|Y | Y = {0,1} |Y | = 2
|X | = 220 220

|Y ||X|

36

Solution: Pseudorandom functions
• Replace a real random function with a function that looks random

•

• Intuition: a PRF is secure if  
	 a random function in is indistinguishable from  
	 a random function in

SF = {F(k, ⋅) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF

SF

Size |K|
𝖥𝗇𝗌[X, Y]

Size |Y ||X|

Secure PRFs

k ← K

f ← Fns[X,Y]
x ∈ X

f(x) or F(k,x) ?

???

• Replace a real random function with a function that looks random

•

• Intuition: a PRF is secure if  
	 a random function in is indistinguishable from  
	 a random function in

SF = {F(k, ⋅) |k ∈ 𝒦} ⊂ 𝖥𝗇𝗌[X, Y]

𝖥𝗇𝗌[X, Y]
SF

PRF Security
Challenger

1.

2. If b = 0

1. Sample

2. Set

3. If b = 1

1. Sample

2. Set

4.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

A

y
b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

Experiment PRFInd Challenger

1.

2. If b = 0

1. Sample

2. Set

3. If b = 1

1. Sample

2. Set

4.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f(x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv A

y
b′￼

PRF Security Game
For every PPT “distinguishing” adversary
A
| Pr[𝖯𝖱𝖥𝖨𝗇𝖽 = 1] − Pr[random guess] | = 𝗇𝖾𝗀𝗅(λ)

40

“Advantage”

x

Repeat the
interaction!

• Let K = X = {0,1}n .

• Consider the PRF: F(k, x) = k ⊕ x defined over (K, X, X)

• Let’s show that F is insecure:

• Adversary :	(1) choose arbitrary x0 ≠ x1 ∈ X

• 	 (2) query for y0 = f(x0) and y1 = f(x1)

• 	 (3) output `0’ if y0 ⊕ y1 = x0 ⊕ x1 , else `1’

𝒜

An example

	 ⟹ AdvPRF[,F] (not negligible)𝒜 = 1 − (1/2𝑛)
Pr[EXP(0) = 0] 1= Pr[EXP(1) = 0] 1/2n=

PRFs → multi-message encryption

42

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

