

CIS 5560

Cryptography
Lecture 3

Announcements

- **HW 0 is out**; due Friday, Jan 30 at 5PM on Gradescope
 - Covers modular arithmetic, basic probability, Caesar cipher
- Office Hours:
 - Pratyush: Monday Mondays 10-11AM, Wednesday 12-1PM

Recap of Last Lecture

- Secure communication Threat Model
- Symmetric-key definition
- Perfect secrecy
- Perfect indistinguishability
- Probability review

Shannon's Perfect Secrecy Definition

$\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, M$ is adversary's guess

$$\Pr[M = m | \text{Enc}(\mathcal{K}, m) = c] = \Pr[M = m]$$

after

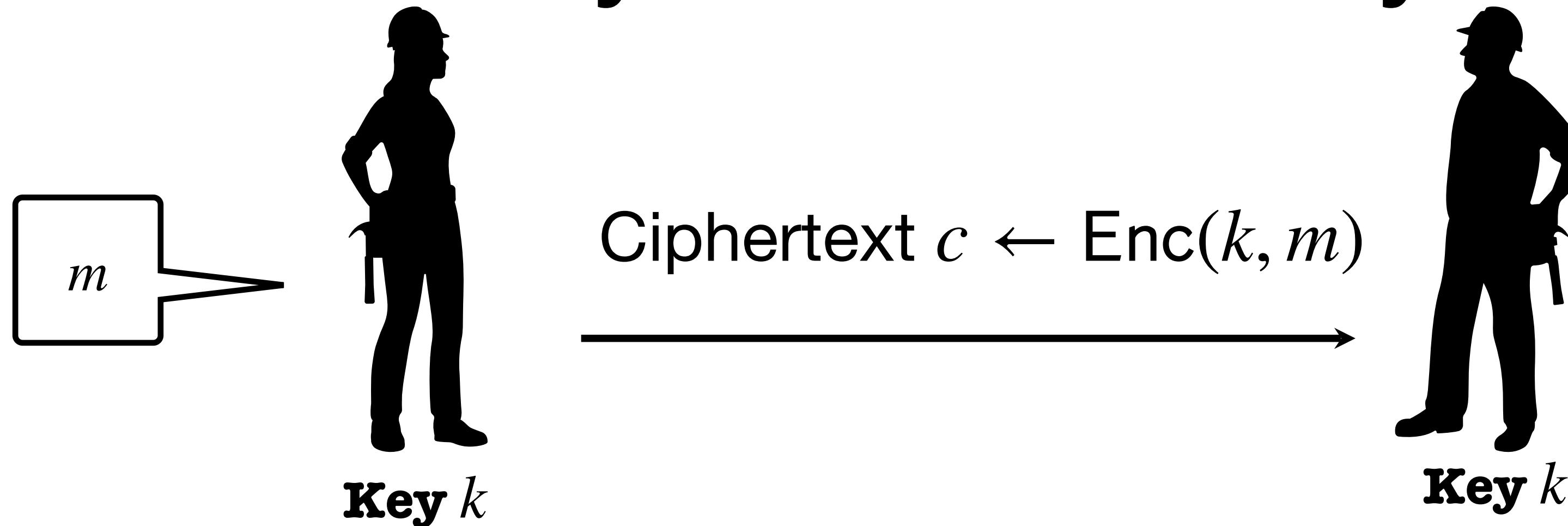
before

✓ CT reveals no info about PT

But this def is difficult to work with:

How to prove that ciphertext reveals no info?

Key notion: Symmetric-Key Encryption



Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: $\text{Gen}(1^\lambda) \rightarrow k$

Has to be randomized (why?)

Encryption Algorithm: $\text{Enc}(k, m) \rightarrow c$

Decryption Algorithm: $\text{Dec}(k, c) \rightarrow m$

One-Time Pad

The One-time Pad Construction:

Gen: Choose an n -bit string k at random, i.e. $k \leftarrow \{0,1\}^n$

Enc(k, m) with $\mathcal{M} = \{0,1\}^n$: Output $c = m \oplus k$

Dec(k, c): Output $m = c \oplus k$

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,

$$|\mathcal{K}| \geq |\mathcal{M}|$$

Today's Lecture

- Indistinguishability
- Negligible functions
- Pseudorandom generators
- Semantic security
- PRGs → Semantically-secure encryption

Defn II: Perfect Secrecy'

For every m, m'

Probability that c encrypts m (with random key k)

=

Probability that c encrypts m' (with diff. key k')

Hence every ciphertext is equally likely to decrypt to a given message

$$\forall m, m' \in \mathcal{M}, c \in \mathcal{C}$$

$$\Pr_{k \leftarrow \mathcal{K}} [\text{Enc}(k, m) = c] = \Pr_{k' \leftarrow \mathcal{K}} [\text{Enc}(k', m') = c]$$

Defn I \rightarrow Defn II

Intuition:

If a ciphertext reveals no information about plaintext, it can equally likely be an encryption for m or m'

Defn III: Perfect Indistinguishability

For every m, m' , and for every “distinguishing” predicate ϕ

Output of ϕ on encryption of m

=

Output of ϕ on encryption of m'

$$\Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] = \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1]$$

Defn II \Rightarrow Perfect Indistinguishability

Define $S = \{c \mid \phi(c) = 1\}$.

$$\begin{aligned} \text{Then, } \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] \\ &= \sum_{c \in S} \Pr_{k \leftarrow \mathcal{K}} [\text{Enc}(k, m) = c] \\ &= \sum_{c \in S} \Pr_{k \leftarrow \mathcal{K}} [\text{Enc}(k, m') = c] \\ &= \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1] \end{aligned}$$

From now on, we will work
with indistinguishability-style
definitions

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,

$$|\mathcal{K}| \geq |\mathcal{M}|$$

- Exchanging large keys is difficult
- Need to keep large keys secure for a long time
- Generating truly random bits is kinda expensive!

So what can we do?

The Key Idea:
Computationally Bounded
Adversaries

Q: So far, we assumed that Eve is unbounded and all-powerful.

Is this reasonable?

A: No! Universe is not infinite!

So, in the real world,
resources are bounded.

The Axiom of Modern Crypto

Feasible Computation
= randomized polynomial-time* algorithms

(p.p.t. = Probabilistic Polynomial-Time)

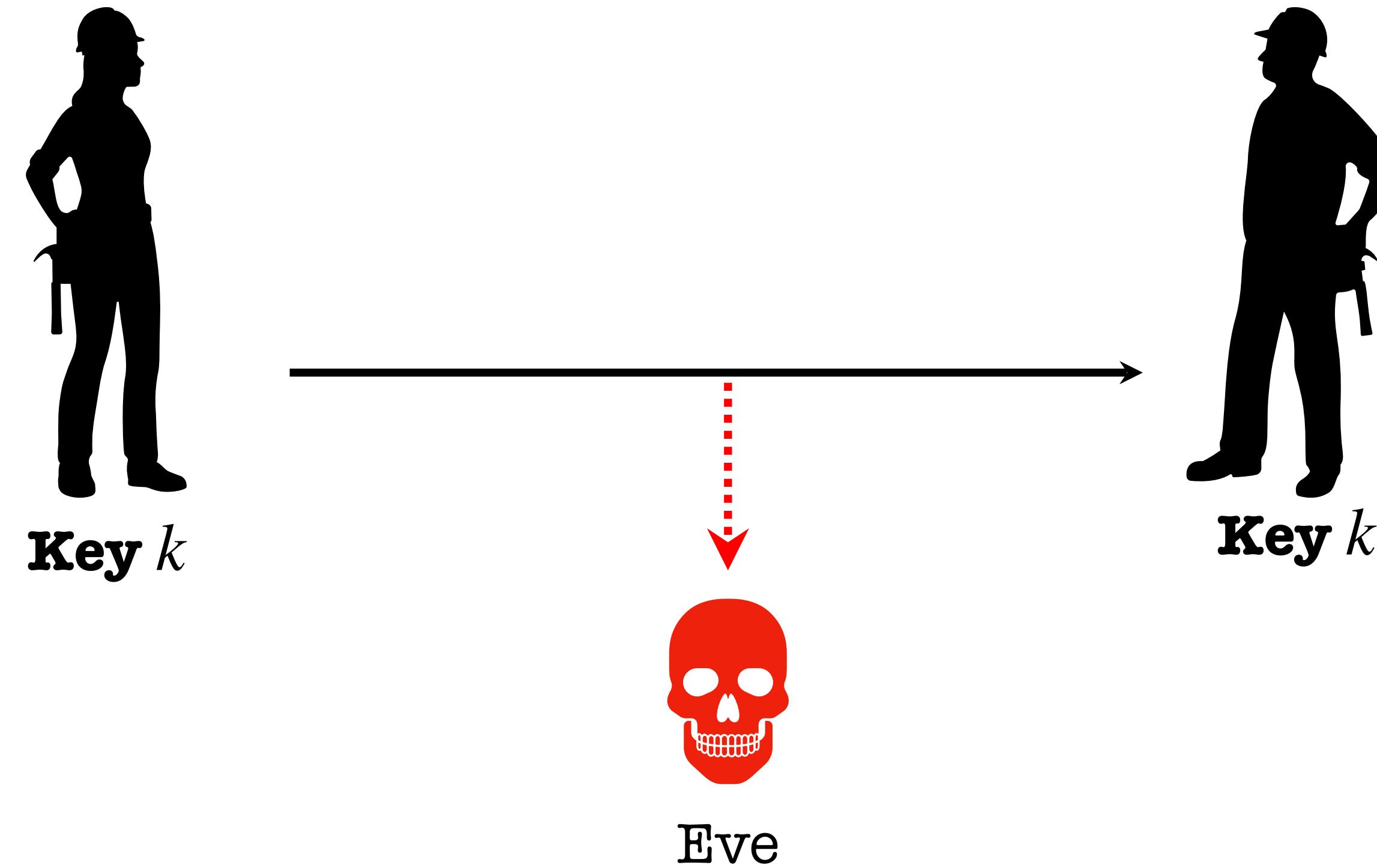
Polynomial in what?

- Size of message?
- Size of key?

Answer: Polynomial in “security parameter” λ . Can think of message and key lengths as upper bounded by λ .

* in recent years, quantum polynomial-time

Secure Communication



Running time of Alice and Bob?

Fixed p.p.t. (e.g., run in time $O(n^2)$)

Running time of Eve?

Arbitrary p.p.t. (e.g., run in time $O(n^2)$ or $O(n^4)$ or $O(n^{1000})$)

Computational Indistinguishability

(take 1)

For every m, m' , and for every PPT “distinguishing” predicate ϕ

Output of ϕ on encryption of m

=

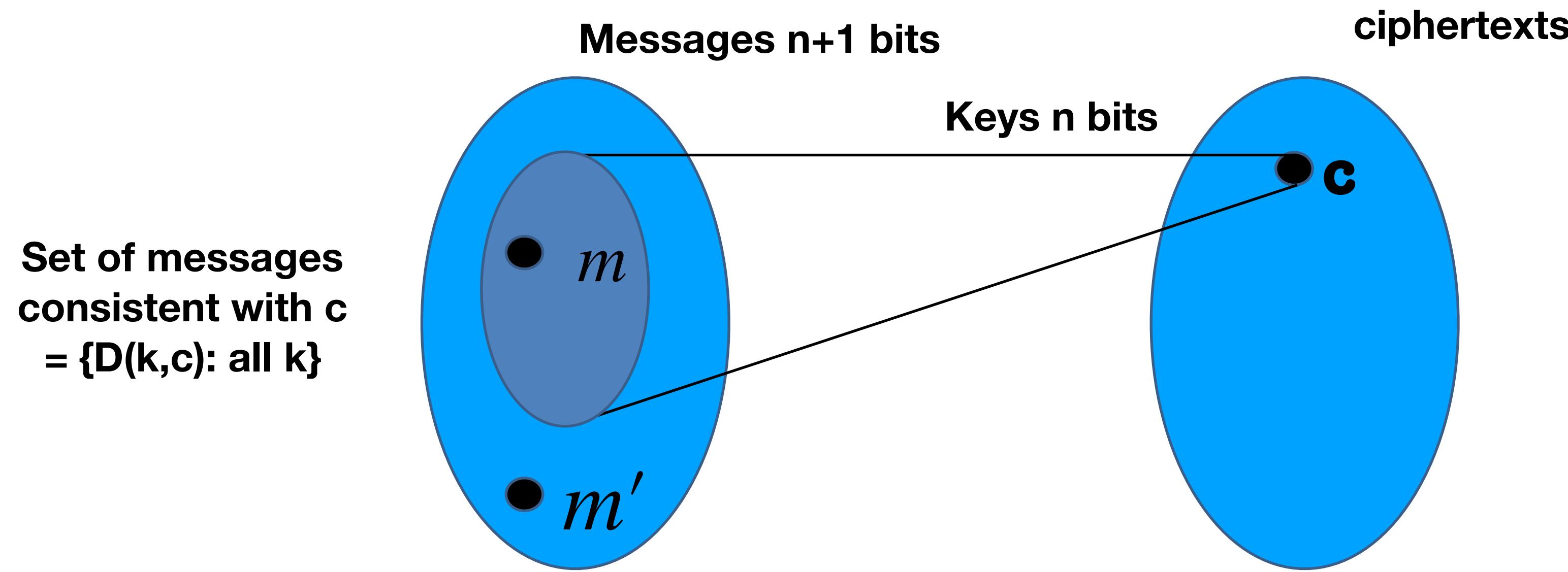
Output of ϕ on encryption of m'

$$\Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] = \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1]$$

Is this enough?

No!

Still subject to Shannon's impossibility!



Consider ϕ that picks a random key k and
outputs 1 if $\text{Dec}(k, c) = m$
outputs 0 if $\text{Dec}(k, c) = m'$
and a random bit if neither holds.

Still subject to Shannon's impossibility!

Consider ϕ that picks a random key k and

- outputs 1 if $\text{Dec}(k, c) = m$
- outputs 0 if $\text{Dec}(k, c) = m'$
- and a random bit if neither holds.

When encrypting m , probability of 1 is $1/2 + 1/2^n$

When encrypting m' , probability of 1 is $1/2$

$$\Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] \neq \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1]$$

What do we do?

Relax guarantees further!

Computational Indistinguishability

(take 1)

For every m, m' , and for every **PPT** “distinguishing” predicate ϕ

Output of ϕ on encryption of m

=

Output of ϕ on encryption of m'

$$\Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] - \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1] = 0$$

Computational Indistinguishability

(take 2)

For every m, m' , and for every **PPT** “distinguishing” predicate ϕ

Output of ϕ on encryption of m

“is close to”

Output of ϕ on encryption of m'

$$\left| \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] - \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1] \right| = \varepsilon$$

How small should ε be?

- In practice:
 - Non-negligible (too large): $1/2^{30}$
 - Negligible: $1/2^{128}$
- In theory, we care about asymptotics:
 - Non-negligible: $\varepsilon > 1/n^2$
 - Negligible: $\varepsilon < 1/p(n)$ for every poly p

New Notion: Negligible Functions

Functions that grow slower than $1/p(n)$ for any polynomial p .

Definition: A function $\varepsilon : \mathbb{N} \rightarrow \mathbb{R}$ is **negligible** if
for every polynomial function p ,

there exists an n_0 s.t.

for all $n > n_0$:

$$\varepsilon(n) < \frac{1}{p(n)}$$

Key property: Events that occur with negligible probability look
to poly-time algorithms like they *never* occur.

Security Parameter: λ

Definition: A function $\varepsilon : \mathbb{N} \rightarrow \mathbb{R}$ is **negligible** if
for every polynomial function p ,
there exists an n_0 s.t.
for all $n > n_0$

$$\varepsilon(n) < \frac{1}{p(n)}$$

- **Runtimes & success probabilities are measured as a function of λ .**
- **Want**: Honest parties run in time (*fixed*) polynomial in λ .
- **Allow**: Adversaries to run in time (*arbitrary*) polynomial in λ ,
- **Require**: adversaries to have success probability negligible in λ .

Computational Indistinguishability

For every m, m' , for every PPT “distinguishing” predicate ϕ **(take 3)**

Output of ϕ on encryption of m

“**is negligibly close to**”

Output of ϕ on encryption of m'

That is, for all PPT ϕ , there exists a negligible function ε such
that for all m, m'

$$\left| \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] - \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1] \right| = \varepsilon(\lambda)$$

Shannon's impossibility?

Consider ϕ that picks a random key k and
outputs 1 if $\text{Dec}(k, c) = m$
outputs 0 if $\text{Dec}(k, c) = m'$
and a random bit if neither holds.

When encrypting m , probability of 1 is $1/2 + 1/2^n$

Negligible!

When encrypting m' , probability of 1 is $1/2$

$$\Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m)) = 1] - \Pr_{k \leftarrow \mathcal{K}} [\phi(\text{Enc}(k, m')) = 1] = 1/2^n$$

Can we achieve this definition?

Yes!

Our First Crypto Tool: Pseudorandom Generators (PRG)

Pseudorandom Generators

Informally: **Deterministic** Programs that stretch a “truly random” seed into a (much) longer sequence of “**seemingly random**” bits.

Q1: How to define “seemingly random”?

Q2: Can such a G exist?

How to Define a Strong Pseudo Random Number Generator?

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distinguish between the output of a PRG on a random seed vs. a truly random string”
= “as good as” a truly random string for all practical purposes.

Def 2 [Next-bit Unpredictability]

“No polynomial-time algorithm can predict the $(i+1)^{\text{th}}$ bit of the output of a PRG given the first i bits, better than chance”

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A **deterministic polynomial-time computable function**

$G : \{0,1\}^n \rightarrow \{0,1\}^m$ is a **PRG** if:

- (a) It is **expanding**: $m > n$ and
- (b) for every **PPT algorithm D (called a distinguisher)** if there is a **negligible function ε** such that:

$$\left| \Pr[D(\mathbf{G}(U_n)) = 1] - \Pr[D(U_m) = 1] \right| = \varepsilon(\lambda)$$

Notation: U_n (resp. U_m) denotes the random distribution on n -bit (resp. m -bit) strings; m is shorthand for $m(n)$.

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A **deterministic polynomial-time computable** function

$G : \{0,1\}^n \rightarrow \{0,1\}^m$ is a **PRG** if:

- (a) It is **expanding**: $m > n$ and
- (b) for every **PPT algorithm D (called a distinguisher)** if there is a **negligible function ε** such that:

$$\left| \Pr_{s \leftarrow \mathcal{U}_n} [D(G(s)) = 1] - \Pr_{s' \leftarrow \mathcal{U}_m} [D(s') = 1] \right| = \varepsilon(\lambda)$$

PRG Def 1: Indistinguishability

WORLD 1:

The Pseudorandom World

$$y \leftarrow G(U_n)$$

WORLD 2:

The Truly Random World

$$y \leftarrow U_m$$

PPT Distinguisher gets y but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can replace **true randomness** by the **output of PRG(seed)** in ANY (polynomial-time) application.

If the application behaves differently, then it constitutes a (polynomial-time) statistical test between PRG(seed) and a truly random string.

PRG \Rightarrow Overcoming Shannon's Conundrum

(or, How to Encrypt $n + 1$ bits using an n -bit key)

$\text{Gen}(1^\lambda) \rightarrow k$:

1. Sample an n -bit string at random.

$\text{Enc}(k, m) \rightarrow c$:

1. Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
2. Output $c = s \oplus m$

$\text{Dec}(k, c) \rightarrow m$:

1. Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
2. Output $m = s \oplus c$

Correctness:

$\text{Dec}(k, c)$ **outputs** $G(k) \oplus c = G(k) \oplus G(k) \oplus m = m$

PRG \Rightarrow Overcoming Shannon's Conundrum

Security: Define distinguisher $D_m(s) = E(s \oplus m)$. Then,

$$= \Pr_{k \leftarrow \mathcal{K}} [E(G(k) \oplus m) = 1] = \Pr_{k \leftarrow \mathcal{K}} [D_m(G(k)) = 1]$$

$$\approx \Pr_{s \leftarrow \mathcal{U}_{n+1}} [D_m(s) = 1] = \Pr_{s \leftarrow \mathcal{U}_{n+1}} [E(s \oplus m) = 1]$$

$$= \Pr_{s \leftarrow \mathcal{U}_{n+1}} [E(s \oplus m') = 1] = \Pr_{s \leftarrow \mathcal{U}_{n+1}} [D_{m'}(s) = 1]$$

$$\approx \Pr_{k \leftarrow \mathcal{U}_n} [D_{m'}(G(k)) = 1] = \Pr_{k \leftarrow \mathcal{U}_n} [E(\text{Enc}(k, m')) = 1]$$