CIS 5560

Cryptography
Lecture 3

Announcements

« HW 0 is out; due Friday, Jan 30 at 5PM on Gradescope
» Covers modular arithmetic, basic probability, Caesar cipher

e Office Hours:

* Pratyush: Monday Mondays 10-11AM, Wednesday 12-1PM

Recap of Last Lecture

* Secure communication Threat Model
e Symmetric-key definition

» Perfect secrecy

» Perfect indistinguishability

* Probabillity review

Shannon’s Perfect Secrecy Definition

Vme M ,NVNc € €, M is adversary's guess

Pr[M = m|Enc(H,m) = c] = Pr[M = m]

after before

v CT reveals no info about PT

But this def is difficult to work with:
How to prove that ciphertext reveals no info?

Key notion: Symmetric-Key Encryption

E}> a Ciphertext ¢ <« Enc(k, m)

Key k Key k

Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: Gen(1%) — k
Has to be randomized (why?)

Encryption Algorithm: Enc(k,m) — ¢

Decryption Algorithm: Dec(k,c) — m

One-Time Pad

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0,1}"

Enc(k, m) with # = {0,1}": Outputc =m @ k

Dec(k,c): Output m = c @ k

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,
| A | > | M |

Today’s Lecture

 Indistinguishability

* Negligible functions
 Pseudorandom generators
e Semantic security

« PRGs — Semantically-secure encryption

Defn II: Perfect Secrecy’

For every m, m’

Probability that ¢ encrypts m (with random key k)

Probability that ¢ encrypts m’ (with diff. key k)

Hence every ciphertext is equally likely to decrypt to a given message

Vm.m' € M,c € €

Pr [Enc(k,m) =c] = Pr [Enc(k’,m’) = c]
k—H k'—H

Defn | = Defn ||

Intuition:
If a ciphertext reveals no information about plaintext, it can
equally likely be an encryption for 17 or m’

Defn lll: Perfect Indistinguishability

For every m, m’, and for every “distinguishing” predicate ¢

Output of ¢ on encryption of m

Output of ¢ on encryption of m’

Pr [@p(Enc(k,m)) =1] = Pr [¢p(Enc(k,m’)) = 1]
k—H k—H

Defn Il = Perfect Indistinguishability

Define S = {c | ¢(c) = 1}.

Then, Pr [¢p(Enc(k,m)) = 1]
kK

— 2 Pr [Enc(k,m) = c]
k—H
cES

= Z Pr [Enc(k,m’) = c]
k—H
cES

= Pr [¢p(Enc(k,m’)) = 1]
k—H

From now on, we will work
with Iindistinguishability-style
definitions

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,
| A | > | M |

- Exchanging large keys is difficult
» Need to keep large keys secure for a long time

» Generating truly random bits is kinda expensive!

So what can we do?

14

The Key ldea:
Computationally Bounded
Adversaries

Q: So far, we assumed that Eve is
unbounded and all-powerful.

|s this reasonable?

A: No! Universe Is not infinite!

So, in the real world,
resources are bounded.

The Axiom of Modern Crypto

Feasible Computation

randomized polynomial-time™ algorithms

(P.p.1. = Probabilistic Polynomial-Time)

Polynomial in what?
e Size of message?
e Size of key?

Answer: Polynomial in “security parameter” A. Can think
of message and key lengths as upper bounded by A.

* in recent years, quantum polynomial-time

Secure Communication

Key k Key k

Running time of Alice and Bob?
Fixed p.p.t. (e.g., run in time O(n?))

Running time of Eve?
Arbitrary p.p.t. (e.g., run in time O(n?) or O(n*) or O(n'"""))

Computational Indistinguishability
(take 1)

For every m, m’, and for every PPT “distinguishing” predicate ¢

Output of ¢ on encryption of m

Output of ¢ on encryption of m’

Pr [@p(Enc(k,m)) =1] = Pr [¢p(Enc(k,m’)) = 1]
k—H k—H

Is this enough?

NO!

Still subject to Shannon’s impossibility!

Messages n+1 bits ciphertexts

Keys n bits

Set of messages

consistent with ¢
= {D(k,c): all k}

Consider ¢ that picks a random key k and
outputs 1 if Dec(k, c) = m

outputs 0 if Dec(k, ¢) = m’
and a random bit If neither holds.

Still subject to Shannon’s impossibility!

Consider ¢ that picks a random key k and
outputs 1 if Dec(k, ¢) = m

outputs 0 if Dec(k, ¢) = m’
and a random bit If neither holds.

When encrypting m, probability of 1is 1/2 + 1/2"

When encrypting m’, probability of 1 is 1/2

Pr [@(Enc(k,m)) = 1] # Pr [@(Enc(k,m’)) = 1]
kX kX

What do we do?

Relax guarantees further!

Computational Indistinguishability
(take 1)

For every m, m’, and for every PPT “distinguishing” predicate ¢

Output of ¢ on encryption of m

Output of ¢ on encryption of m’

Pr [@(Enc(k,m)) =1]— Pr [¢p(Enc(k,m’))=1]=0
k—FH kX

Computational Indistinguishability
(take 2)

For every m, m’, and for every PPT “distinguishing” predicate ¢

Output of ¢ on encryption of m

“Is close t0”

Output of @ on encryption of m’

Pr [@(Enc(k,m)) = 1] — Pr [@(Enc(k,m’)) =1]| =¢
ke k—FH

How small should & be?

* |n practice:

. Non-negligible (too large): 1/2°"
. Negligible: 1/21%°

* In theory, we care about asymptotics:

. Non-negligible: € > 1/n?

* Negligible: € < 1/p(n) for every poly p

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function € : N — R Is negligible if
for every polynomial function p,

there exists an n; s.t.
forall n > np:

1

e(n) <)

Key property: Events that occur with negligible probability look
to poly-time algorithms like they never occuir.

Security Parameter: A

Definition: A function € : N — R is negligible if
for every polynomial function p,

there exists an 7 s.t.

forall n > n,

e(n) <

p(n)

Runtimes & success probabilities are measured as a function of /.
Want: Honest parties run in time (fixed) polynomial in A.

Allow: Adversaries to run in time (arbitrary) polynomial in A,

Require: adversaries to have success probabillity negligible in A.

28

Computational Indistinguishability

For every m, m’, for every PPT “distinguishing” predicate ¢ (take 3)

Output of ¢ on encryption of m
“Is negligibly close to”
Output of @ on encryption of m’

That is, for all PPT ¢, there exists a negligible function & such
that for all m, m’

Pr [¢p(Enc(k,m)) = 1] — Pr [¢(Enclk,m)) = 11| = ()
kA keF

Shannon’s impossibility?

Consider ¢ that picks a random key k and
outputs 1 if Dec(k, ¢) = m

outputs 0 if Dec(k, ¢) = m’
and a random bit If neither holds.

When encrypting m, probability of 1is 1/2 + 1/2"

When encrypting m’, probability of 1 is 1/2

Pr [@(Enc(k,m)) =1] — Pr [¢p(Enc(k,m’))=1]=1/2"
k—H k—H

Can we achieve this definition?

Yes!

Our First Crypto Tool:
Pseudorandom Generators (PRG)

Pseudorandom Generators

Informally: Deterministic Programs that stretch
a “truly random” seed into a (much) longer
sequence of “seemingly random?” bits.

seed > PRG G » b1b2b3...

Q1: How to define “seemingly random”?

Q2: Can such a G exist?

33

How to Define a Strong
Pseudo Random Number Generator?

Def 1 [Indistinguishability]

*No polynomial-time algorithm can distinguish between the
output of a PRG on a random seed vs. a truly random string”

= "as good as” a truly random string for all practical purposes.

Def 2 [Next-bit Unpredictability]

“*No polynomial-time algorithm can predict the (i+1)th bit of the
output of a PRG given the first i bits, better than chance”

34

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:
(a) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is
a negligible function ¢ such that:

Pr[D(G(U))) = 1]=Pr[DU,) = 1]| = (1)

Notation: U (resp. U,) denotes the random distribution
on n-bit (resp. m-bit) strings; m is shorthand for m(n).

35

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:
(a) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is
a negligible function ¢ such that:

Pr [D(G(s)) =1]— Pr [D(s) =1]| = &e(1)

s, s'<U,

36

PRG Def 1: Indistinguishability

WORLD 1: WORLD 2:
The Pseudorandom World The Truly Random World

bo

2
y< GWU) } y< U,

PPT Distinguisher gets y but cannot tell which world she
IS INn

37

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can
replace true randomness by the output of
PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it

constitutes a (polynomial-time) statistical test
between PRG(seed) and a truly random string.

33

PRG = Overcoming Shannon’s Conundrum
(or, How to Encrypt n + 1 bits using an n-bit key)

Gen(1%) - k:

1. Sample an n-bit string at random.

Enc(k,m) — c:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Outputc=sP m

Dec(k, c) — m:
1. Expand k to an n + 1-bit string using PRG: s = G(k)
2. Outputm =sPc

Correctness:
Dec(k, c) outputs G(k) @ c = G(k) @ G(k) D m = m

PRG = Overcoming Shannon’s Conundrum

Security: Define distinguisher D _(s) = E(s € m). Then,

= Pr [EGK)@m)=1]= Pr [D,(G(k) = 1]
k—H keF

~ Pr [D (s)=1]= Pr [E(s®m)=1]

S(_%n+1 S<—wn+1

= Pr [E(sd&m)=1]= Pr [D, (s)=1]

~ Pr [D (G(k)) =1]== Pr [E(Enc(k,m’))=1]
k<, k<,

