
CIS 5560

Lecture 3
Cryptography

1



Announcements

• HW 0 is out; due Friday, Jan 30 at 5PM on Gradescope


• Covers modular arithmetic, basic probability, Caesar cipher


• Office Hours: 


• Pratyush: Monday Mondays 10-11AM, Wednesday 12-1PM

2



Recap of Last Lecture

• Secure communication Threat Model


• Symmetric-key definition


• Perfect secrecy


• Perfect indistinguishability


• Probability review

3



Shannon’s Perfect Secrecy Definition

✓ CT reveals no info about PT

But this def is difficult to work with: 
How to prove that ciphertext reveals no info?

Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

∀m ∈ ℳ, ∀c ∈ 𝒞, M is adversary's guess

4



Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: 𝖦𝖾𝗇(1λ) → k

Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m

Ciphertext c ← 𝖤𝗇𝖼(k, m)

Has to be randomized (why?)

Key notion: Symmetric-Key Encryption

m

Key k Key k

5



One-Time Pad
The One-time Pad Construction:

: Choose an -bit string  at random, i.e. 𝖦𝖾𝗇 𝑛 k k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k

6



Perfect Secrecy has its Price
THEOREM: For any perfectly secure encryption scheme, 

 |𝒦 | ≥ |ℳ |

7



Today’s Lecture

• Indistinguishability


• Negligible functions


• Pseudorandom generators


• Semantic security


• PRGs → Semantically-secure encryption

8



Defn II: Perfect Secrecy’
For every 


 
Probability that  encrypts  (with random key )


=


Probability that  encrypts  (with diff. key ) 

Hence every ciphertext is equally likely to decrypt to a given message

m, m′￼

c m k

c m′￼ k′￼

,∀m, m′￼ ∈ ℳ c ∈ 𝒞
Pr

k←𝒦
[𝖤𝗇𝖼(k, m) = c] = Pr

k′￼←𝒦
[𝖤𝗇𝖼(k′￼, m′￼) = c]

9



Defn I ⇒ Defn II

Intuition: 
If a ciphertext reveals no information about plaintext, it can 
equally likely be an encryption for  or m m′￼

10



Defn III: Perfect Indistinguishability
For every , and for every “distinguishing” predicate 


 
Output of  on encryption of   

=


Output of  on encryption of 

m, m′￼ ϕ

ϕ m

ϕ m′￼

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] = Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1]

11



Defn II ⇒ Perfect Indistinguishability
Define .


Then, 


      


      


      


 

S = {c ∣ ϕ(c) = 1}
Pr

k←𝒦
[ϕ(𝖤𝗇𝖼(k, m)) = 1]

= ∑
c∈S

Pr
k←𝒦

[𝖤𝗇𝖼(k, m) = c]

= ∑
c∈S

Pr
k←𝒦

[𝖤𝗇𝖼(k, m′￼) = c]

= Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1]

12



From now on, we will work 
with indistinguishability-style 

definitions

13



Perfect Secrecy has its Price
THEOREM: For any perfectly secure encryption scheme, 

 |𝒦 | ≥ |ℳ |

14

• Exchanging large keys is difficult


• Need to keep large keys secure for a long time


• Generating truly random bits is kinda expensive!

So what can we do?



The Key Idea: 

Computationally Bounded 

Adversaries



Q: So far, we assumed that Eve is 
unbounded and all-powerful. 

 
Is this reasonable?

A: No! Universe is not infinite!  
 

So, in the real world, 
resources are bounded.



The Axiom of Modern Crypto
Feasible Computation  

=  
randomized polynomial-time* algorithms

(p.p.t. = Probabilistic Polynomial-Time)

* in recent years, quantum polynomial-time

Polynomial in what? 

• Size of message?

• Size of key?

 
Answer: Polynomial in “security parameter” . Can think 
of message and key lengths as upper bounded by .

λ
λ



Secure Communication

Running time of Alice and Bob?

Fixed p.p.t.  (e.g., run in time )O(n2)

Running time of Eve?

Arbitrary p.p.t.  (e.g., run in time  or  or  )O(n2) O(n4) O(n1000)

Key k Key k

Eve



Computational Indistinguishability
(take 1)

For every , and for every PPT “distinguishing” predicate 

 

Output of  on encryption of   
=


Output of  on encryption of 

m, m′￼ ϕ

ϕ m

ϕ m′￼

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] = Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1]



Is this enough?


No!



Still subject to Shannon’s impossibility!

c
Set of messages 
consistent with c 

= {D(k,c): all k} 

Messages n+1 bits 

m

m′￼

ciphertexts 

Consider  that picks a random key  and  
	 outputs 1 if  = 

	 outputs 0 if  = 


	 and a random bit if neither holds.

ϕ k
𝖣𝖾𝖼(k, c) m
𝖣𝖾𝖼(k, c) m′￼

Keys n bits 



Still subject to Shannon’s impossibility!
Consider  that picks a random key  and  

	 outputs 1 if  = 

	 outputs 0 if  = 


	 and a random bit if neither holds.

ϕ k
𝖣𝖾𝖼(k, c) m
𝖣𝖾𝖼(k, c) m′￼

When encrypting , probability of 1 is  
 
When encrypting , probability of 1 is 

m 1/2 + 1/2n

m′￼ 1/2

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] ≠ Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1]



What do we do?


Relax guarantees further!



Computational Indistinguishability
(take 1)

For every , and for every PPT “distinguishing” predicate 

 

Output of  on encryption of   
=


Output of  on encryption of 

m, m′￼ ϕ

ϕ m

ϕ m′￼

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] − Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1] = 0



Computational Indistinguishability
(take 2)

For every , and for every PPT “distinguishing” predicate 

 

Output of  on encryption of 

“is close to” 

Output of  on encryption of 

m, m′￼ ϕ

ϕ m

ϕ m′￼

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] − Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1] = ε



How small should  be?ε
• In practice:


• Non-negligible (too large): 


• Negligible: 


• In theory, we care about asymptotics:


• Non-negligible:  


• Negligible:  for every poly 

1/230

1/2128

ε > 1/n2

ε < 1/p(n) p



New Notion: Negligible Functions
Functions that grow slower than  for any polynomial . 1/p(n) p

Definition: A function  is negligible if  
	 for every polynomial function p, 

	 for all sufficiently large n:

  

 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look 
to poly-time algorithms like they never occur. 



Security Parameter: λ

• Runtimes & success probabilities are measured as a function of . 
• Want: Honest parties run in time (fixed) polynomial in .  
• Allow: Adversaries to run in time (arbitrary) polynomial in ,  
• Require: adversaries to have success probability negligible in .

λ
λ

λ
λ

Definition: A function  is negligible if  
for every polynomial function p, 

there exists an  s.t. 
for all   

 
 

ε : ℕ → ℝ

n0
n > n0

ε(n) <
1

p(n)

28



Computational Indistinguishability
(take 3)For every , for every PPT “distinguishing” predicate 


 
Output of  on encryption of 


“is negligibly close to” 

Output of  on encryption of 


That is, for all PPT , there exists a negligible function  such 
that for all  

m, m′￼ ϕ

ϕ m

ϕ m′￼

ϕ ε
m, m′￼

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] − Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1] = ε(λ)



Shannon’s impossibility?
Consider  that picks a random key  and  

	 outputs 1 if  = 

	 outputs 0 if  = 


	 and a random bit if neither holds.

ϕ k
𝖣𝖾𝖼(k, c) m
𝖣𝖾𝖼(k, c) m′￼

When encrypting , probability of 1 is  
 
When encrypting , probability of 1 is 

m 1/2 + 1/2n

m′￼ 1/2

Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m)) = 1] − Pr
k←𝒦

[ϕ(𝖤𝗇𝖼(k, m′￼)) = 1] = 1/2n

Negligible!



Can we achieve this definition? 

Yes!



Our First Crypto Tool:  
Pseudorandom Generators (PRG)



Pseudorandom Generators
Informally: Deterministic Programs that stretch 

a “truly random” seed into a (much) longer 
sequence of “seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Q2: Can such a G exist? 

Q1: How to define “seemingly random”?

33



How to Define a Strong  
Pseudo Random Number Generator?

Def 1 [Indistinguishability] 
“No polynomial-time algorithm can distinguish between the 
output of a PRG on a random seed vs. a truly random string”

= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability] 
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits, better than chance”

34



PRG Def 1: Indistinguishability

Notation:  (resp. ) denotes the random distribution 
on -bit (resp. -bit) strings;  is shorthand for .

Un Um
n m m m(n)

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(λ)

35

Definition [Indistinguishability]:  
A deterministic polynomial-time computable function  
                          is a PRG if: 
(a) It is expanding:  and  
(b) for every PPT algorithm  (called a distinguisher) if there is 

a negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε



PRG Def 1: Indistinguishability
Definition [Indistinguishability]:  
A deterministic polynomial-time computable function  
                          is a PRG if: 
(a) It is expanding:  and  
(b) for every PPT algorithm  (called a distinguisher) if there is 

a negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr
s←𝒰n

[D(G(s)) = 1] − Pr
s′￼←𝒰m

[D(s′￼) = 1] = ε(λ)

36



PRG Def 1: Indistinguishability

WORLD 1:  
The Pseudorandom World

𝑦 ← 𝐺(𝑈𝑛)

WORLD 2:  
The Truly Random World

𝑦 ← 𝑈𝑚

PPT Distinguisher gets  but cannot tell which world she 
is in

y

37



Why is this a good definition

Good for all Applications:  
As long as we can find truly random seeds, can 

replace true randomness by the output of 
PRG(seed) in ANY (polynomial-time) application. 

If the application behaves differently, then it 
constitutes a (polynomial-time) statistical test 
between PRG(seed) and a truly random string.

38



PRG ⇒ Overcoming Shannon’s Conundrum
(or, How to Encrypt  bits using an -bit key)n + 1 n

 outputs 𝖣𝖾𝖼(k, c) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

:

1. Sample an -bit string at random.

𝖦𝖾𝗇(1λ) → k
n

:

1. Expand  to an -bit string using PRG: 

2. Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m

:

1. Expand  to an -bit string using PRG: 

2. Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:



Security: Define distinguisher . Then,


 

 

 

 

	 	 	

Dm(s) = E(s ⊕ m)

= Pr
k←𝒦

[E(G(k) ⊕ m) = 1] = Pr
k←𝒦

[Dm(G(k)) = 1]

≈ Pr
s←𝒰n+1

[Dm(s) = 1] = Pr
s←𝒰n+1

[E(s ⊕ m) = 1]

= Pr
s←𝒰n+1

[E(s ⊕ m′￼) = 1] = Pr
s←𝒰n+1

[Dm′￼
(s) = 1]

≈ Pr
k←𝒰n

[Dm′￼
(G(k)) = 1] = = Pr

k←𝒰n

[E(𝖤𝗇𝖼(k, m′￼)) = 1]

PRG ⇒ Overcoming Shannon’s Conundrum


